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Hippocampal Engrams Generate Variable Behavioral
Responses and Brain-Wide Network States
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Freezing is a defensive behavior commonly examined during hippocampal-mediated fear engram reactivation. How these cellular
populations engage the brain and modulate freezing across varying environmental demands is unclear. To address this, we opto-
genetically reactivated a fear engram in the dentate gyrus subregion of the hippocampus across three distinct contexts in male
mice. We found that there were differential amounts of light-induced freezing depending on the size of the context in which reac-
tivation occurred: mice demonstrated robust light-induced freezing in the most spatially restricted of the three contexts but not in
the largest. We then utilized graph theoretical analyses to identify brain-wide alterations in cFos expression during engram reacti-
vation across the smallest and largest contexts. Our manipulations induced positive interregional cFos correlations that were not
observed in control conditions. Additionally, regions spanning putative “fear” and “defense” systems were recruited as hub regions
in engram reactivation networks. Lastly, we compared the network generated from engram reactivation in the small context with a
natural fear memory retrieval network. Here, we found shared characteristics such as modular composition and hub regions. By
identifying and manipulating the circuits supporting memory function, as well as their corresponding brain-wide activity patterns,
it is thereby possible to resolve systems-level biological mechanisms mediating memory's capacity to modulate behavioral states.
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Significance Statement

Implementing appropriate defensive behaviors across disparate environments is essential for survival. Memories can be used
to select these responses. Recent work identified and artificially manipulated cellular ensembles (i.e., memory engrams)
within the hippocampus that mediate fear memory retrieval, yet how these populations engage brain-wide pathways that
mediate defensive behaviors, such as freezing, under different environments remains unclear. We demonstrated here that
reactivation across environments of various sizes elicits different freezing responses and corresponding brain-wide network
dynamics. These findings establish the flexibility of memory-bearing ensembles in generating brain and behavior states.

Introduction
All animals utilize a repertoire of defensive strategies to avoid
danger under a variety of environmental conditions. For
instance, it could be more advantageous to hide when hunted
in a densely forested area, yet fleeing could be more advantageous
in a vast field. The brain performs a series of computations to
integrate important contextual information that dictates appro-
priate behavioral outputs (Fanselow, 1994; Gross and Canteras,
2012; Silva et al., 2016). The defensive strategies chosen, such
as freezing in a forest or fleeing in a field, can be learned and
used to guide the animal in future scenarios.

Memory systems play an important role in mediating defen-
sive actions based on past events. This helps the animal avoid
potentially harmful scenarios or cope with similar threatening
situations. The hippocampus is an evolutionarily conserved
region crucial to episodic memory processes that guide defensive
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actions during fear memory retrieval, and lesions show that hip-
pocampal disruption can impair such behavioral responses
(Scoville and Milner, 1957; Kim et al., 1993; Fanselow, 1994;
Maren et al., 2013). Populations of cells within the hippocampus,
often termed “engram” ensembles, are both necessary and
sufficient to drive memory expression (Liu et al., 2012; Chen et
al., 2019; Jossleyn and Tonegawa, 2020). Activity-dependent
and inducible tagging systems have allowed researchers to artifi-
cially manipulate engrams encoding fearful experiences to drive
defensive actions (Reijmers et al., 2007). Many of these studies
measured freezing behavior when a hippocampal fear engram
is reactivated in a novel context (Liu et al., 2012; Ryan et al.,
2015; Roy et al., 2016). However, recent reports show that hippo-
campal fear engrams can drive place aversion or anxiety-related
avoidance-like responses instead of freezing (Ramirez et al., 2013;
Redondo et al., 2014; Chen et al., 2019). This alludes to the pos-
sibility tested here that hippocampal fear engrams are flexible in
their capacity to drive state-dependent alterations in behavioral
outputs contingent on external demands. How these discrete
populations can engage underlying neural systems to gate defen-
sive behaviors is relatively unknown.

To gain mechanistic insight into memory-driven defensive
behaviors, we leveraged activity-dependent, inducible tagging
strategies to optogenetically manipulate hippocampal fear
engrams in freely behaving mice. We first tagged a hippocampal
fear engram in the dentate gyrus (DG) subregion with
channelrhodopsin-2 (ChR2) during contextual fear conditioning
(CFC). Over subsequent days, mice were then subjected to opto-
genetic reactivation in a set of different sized environments. Our
findings show that the tagged hippocampal CFC engram is not
fixed to a singular defensive response during optogenetic reacti-
vation, as mice engaged in freezing when the hippocampal fear
engram was reactivated in a small arena but not in a large area.

Moreover, a variety of neural circuits are implicated in medi-
ating defensive actions. These areas span putative “fear” and
“defense” systems for sensory detection, integration, and com-
manding behavior output (Fendt and Fanselow, 1999; Gross
and Canteras, 2012; Tovote et al., 2015; Silva et al., 2016).
Recent technological advancements in whole-brain clearing,
immunolabeling, and light-sheet microscopy allow researchers
to take an unbiased approach to examine interactions between
these systems with mesoscale resolution (Dean et al., 2015;
Kim et al., 2015; Park et al., 2019; Swaney et al., 2019; Yun et
al., 2019). Using these approaches, we examined brain-wide pair-
wise correlations of endogenous cFos expression in mice that
underwent optogenetic reactivation of the hippocampal CFC
engram in either the smallest arena or the largest, as those envi-
ronments promoted and discouraged light-induced freezing,
respectively. We then utilized network analyses to examine the
topological nature of the functional interactions between brain
areas and then identified mediator “hub” regions that were cru-
cial to the resulting graphs. We found that hippocampal CFC
engram reactivation greatly increased brain-wide cFos correla-
tion. The respective functional networks differed in their topo-
logical structure—suggesting that each condition produced
unique brain states. Regions in fear and memory systems were
differentially recruited as hub regions across experimental
conditions.

Together, our results show that hippocampal CFC engrams
drive behavioral outputs that are contingent on environmental
parameters such as size. These outputs uniquely engage brain-
wide processes and point to numerous hub regions as sites for
future perturbation studies. The flexibility of hippocampal CFC

engrams underscores the dynamic nature of memory-guided
behavior and offers a new dimension to intervening with disor-
ders of the brain in which fear is a core component, such as post-
traumatic stress disorder and anxiety.

Methods
Animals
Wild-type males (2–3 months of age; Charles River Laboratories) were
housed in groups of 3–4 per cage. Aggressor mice were separated from
cagemates as needed and were single housed with extra enrichment.
All mice were kept on 12:12 light/dark cycles (0700-1900) in humidity-
controlled colony rooms and had ad libitum access to standard rodent
chow and water. Upon arrival at the facility, mice were left undisturbed
for 3 d. We substituted the rodent chow with 40 mg/kg doxycycline
(DOX) chow 24 h prior to surgery. Surgerized mice were left undisturbed
for 10 d to recover. All subjects were treated in accordance with protocol
201800579 approved by Boston University's Institutional Animal Care
and Use Committee (IACUC Protocol 17-008).

Viruses
The two viruses for the activity-dependent tagging system were packaged
at the University of Massachusetts Amherst Viral Vector Core. The first
virus contains a pAAV-cFos-tTA plasmid vector and the second a
pAAV-TRE-ChR2-eYFP (or TRE-eYFP for control experiments). Neural
activity induces the expression of the AAV9-cFos-tTA construct and gen-
erates tTA proteins in cells. The tetracycline transactivator (tTA) proteins
then bind to the tetracycline response element (TRE) to induce the
expression of either -ChR2-eYFP or -eYFP. This system is regulated by
DOX, a tetracycline derivative, for strict temporal control over when cells
are labeled. The removal of DOX from the system opens a tagging win-
dow to allow tTA to bind to TRE.

Surgical procedures
Mice were placed in an induction chamber and anesthetized with a mix-
ture of 4% isoflurane and 70% oxygen and were maintained at 2% isofl-
urane when mounted in the nosecone of the stereotaxic frame (Kopf
Instruments). We applied ophthalmic ointment to both eyeballs to pre-
vent them from drying during surgery. Hair was removed via topical
application of hair removal cream, and the scalp was cleaned with etha-
nol and betadine. We then applied 2% lidocaine (Clipper Distributing
Company) to the surface of the scalp for topical analgesia. We made a
scalp incision to expose the skull. Peroxide was applied to the surface
of the skull to bleach the skull sutures, and the skull was then leveled
between bregma and lambda. Bilateral craniotomies were made above
the site of the viral injection.

All injection coordinates are in relation to bregma (in mm): for the
DG, AP =−2.2, ML=±1.3, and DV=−2.0. A 33-gauge beveled needle
connected to a 10 µl Hamilton syringe attached to a micro-infusion
pump (UMP3, World Precision Instruments) was used for the viral
injections. The needle was lowered 0.2 mm past the injection site and
was kept stationary for 2 min. We then raised the needle to the site of
injection and waited 1 min before virus infusion. We bilaterally injected
the DG with 200 nl of the AAV9-cFos-tTA and AAV9-TRE-
ChR2-Venus viral cocktail at a rate of 110 nl/min. Five minutes after
the injection was complete, we then moved the needle 0.2 mm above
the injection site and waited another 3 min before complete needle
removal. DG-injected mice were then implanted with bilateral fiber
optics (200 µm core diameter; Doric Lenses) directly above the site of
viral injection (−1.8 DV). Skull screws were anchored for implant sup-
port. We applied layers of metabond and dental cement (A-M
Systems) to create a cap over the skull. All mice received a 0.1 ml intra-
peritoneal injection of 0.3 mg/ml buprenorphine, a subcutaneous
0.5 mg/ml injection of meloxicam, and 0.2 ml of subcutaneous saline fol-
lowing surgery and were placed on a heating pad until conscious
recovery.
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Fear conditioning and tagging
All mice were handled for 2 d prior to experiments. After the second day
of handling, the DOX diet was swapped with rodent chow, and the ani-
mals were left undisturbed for 2 d prior to CFC. This opened the window
for activity-dependent viral labeling during the CFC tagging period. Mice
were placed in either a standard conditioning chamber with plexiglass
walls and a grid floor (17.78 cm L× 17.78 cm W×30.48 cm H;
Coulbourn Instruments) or a custom-built large arena with a series of
connected grid floors (57 cm L× 53 cm W×51 cm H). These grid
floors were connected to precision shockers and delivered a series of
four foot shocks (2 s, 0.5 mA intensity) throughout the duration of the
8 min tagging session. Mice were placed back on the DOX diet in a clean
cage immediately after tagging and remained on DOX for the duration of
the experiment. Video data were collected via overhead cameras
(Computar) that interface with FreezeFrame (Actimetrics).
FreezeFrame can both control the delivery of the foot shocks and per-
form rudimentary freezing analyses. Freezing during CFC was defined
as bouts of 1.25 s or longer with minimal changes in pixel luminance
as defined by a numeric pixel threshold, N.

Optogenetics
We tested each patch cord before optogenetic experiments to ensure that
each patch cord generated at least ∼10 mW of power. Fiber-optic
implants were plugged into a patch cord connected to a 450 nm laser
diode (Doric Lenses). For the large, medium, and small arena sessions,
mice were allowed to freely explore for 10 min. Each session began
with a 2 min baseline period followed by two duty cycles of optogenetic
stimulation. Each duty cycle began with a 2 min light stimulation
(light-ON; 20 Hz, 10 ms pulses) followed by 2 min of no light
(light-OFF). At the end of the final light-OFF epoch, mice were
unplugged from the patch cord and returned to their home cage.

Behavioral assays
All behavioral assays were conducted during the light cycle (0700-1900).
During this time, mice had ad libitum access to DOX chow (or regular
chow for the natural retrieval group) and water. Any noticeable aggressor
mouse was separated to prevent any injury to cagemates.

Large box. The large environment was a 63 cm L× 63 cm D×
45.5 cmH arena with opaque walls and a white matte bottom. The center
of the chamber was demarcated with a 32 cm× 32 cm square. We addi-
tionally introduced an orange scent and dimmed the overhead lighting as
new contextual information. Mice were allowed to freely explore for
10 min. Optogenetic stimulation was delivered as described above.

Medium box. This experiment was conducted in a conditioning
chamber normally suited for rats (30.48 cm L× 25.4 cm W×30.48 cm
H; Coulbourn Instruments). We taped laminated sheets of paper with
a cross-hatched design to the walls and placed the laminated paper
with a vertical bar pattern on the floor to eliminate any contextual sim-
ilarities. We additionally introduced a vanilla scent. Mice were allowed to
freely explore for 10 min. Optogenetic stimulation was delivered as
described above.

Small box. This session was performed in a conditioning chamber
different from the one that was used for fear conditioning tagging
(17.78 cm L× 17.78 cm W×30.48 cm H; Coulbourn Instruments). We
taped laminated sheets with a vertical bar design to the walls of the cham-
ber and placed a solid opaque plastic insert on the bottom of the cham-
ber. We additionally introduced an almond scent in the room. Mice were
allowed to freely explore the MB for 10 min. Optogenetic stimulation
was delivered as described above.

Natural retrieval. Mice dedicated to the natural retrieval group were
subjected to CFC as previously described (see Fear conditioning and tag-
ging). However, these mice were not surgerized and therefore did not
have any engram tagging. They were placed back in the original chamber
in which they received CFC 24 h later for a 3 min period. We define the
natural retrieval of a fear memory as occurring within the first 3 min of

context reexposure to prevent any extinction-like phenomena (Sierra-
Mercado et al., 2011; Milad and Quirk, 2012). The size of the chamber
was similar to that of the small box (SB) condition (17.78 cm L×
17.78 cm W×30.48 cm H; Coulbourn Instruments) but with no alter-
ations to walls, scent, or flooring.

Behavioral analysis
Video data from the behavioral assays were taken using GoPro cameras
and analyzed using video tracking software (ANY-maze). The total
time spent in the center for the large box (LB) sessions and total time
freezing for all experimental sessions were automatically quantified
and binned into 2 min intervals corresponding to the light epoch.
Rearing and self-grooming were manually quantified by experimenters
blind to the animal identification. For the natural retrieval group,
FreezeFrame software quantified and binned freezing across the 3
min session.

Immunohistochemistry
All mice were transcardially perfused 90 min after the first bin of opto-
genetic stimulation with 4°C phosphate-buffered saline (PBS) followed
by 4% paraformaldehyde (PFA) in PBS.

All brains for slice immunohistochemistry were stored in PFA for
48 h prior to slicing. Brains were serial sectioned in 50 μm increments
using a vibratome (Leica, VT100S) and collected in cold PBS. We col-
lected slices containing the DG as needed. All slices were incubated for
2 h at room temperature in a 1× PBS + 0.2% Triton (PBST) and 5% nor-
mal goat serum (NGS) on an orbital shaker (Amazon). Slices were then
transferred to wells containing a primary antibody solution [1:1,000 rab-
bit anti-cFos (Synaptic Systems), 1:1,000 chicken anti-GFP (Invitrogen)]
and were left to incubate for 48 h on an orbital shaker at 4°C. Slices were
washed with PBS for 40 min (20 min 2×) followed by incubation with a
secondary antibody solution [1:200 Alexa 555 anti-rabbit (Invitrogen);
1:200 Alexa 488 anti-chicken (Invitrogen)]. After incubation, slices
were washed once more as previously described and mounted onto
microscope slides (VWR International). Cell nuclei were counterstained
with DAPI added to Vectashield HardSet Mounting Medium on a cov-
erslip and were left to dry overnight.

Confocal microscopy and cell quantification
To confirm virus expression, we acquired images using an LSM-800 con-
focal microscope with a 20× objective lens (Carl Zeiss AG). Each image of
the region of interest (ROI) contained 20 slices in a z-stack with a step
size of 1.54 μm. We additionally set a series of tiles with a 10% overlap
to create a single image of the ROI. Images were captured either manually
with no focus strategy or were automated using the software autofocus
feature in Zen Blue (ver. 2.3) to detect the most intense fluorescent pixels
within the defined z-stack. All DAPI and cFos cells were quantified using
a machine learning approach (Berg et al., 2019). Ensemble overlap
between endogenous cFos and the tagged hippocampal CFC engram
was manually quantified by experimenters blind to the animals’ condi-
tion. For ChR2 SB overlap statistics (Fig. 6C), we extrapolated the average
granule cell density measurement from Keller et al. (2018) to compare
our ensemble overlap relative to chance, which we define as:

(#; of GFP+ |cFos+cells)/((#; GFP+cells/7935)∗(#; cFos+cells/7935))

LifeCanvas Technologies
Brains for network analyses were stored in PFA for 24 h after perfusion
and extraction. They were then stored in 0.02% sodium azide solution
before being sent to LifeCanvas Technologies for brain-wide cFos
detection.

Once there, brains undergo a series of preservation and clearing steps
using SHIELD (Park et al., 2019) and SmartClear Pro technology (Kim et
al., 2015), respectively. The samples are then washed and prepped for
organ-scale immunolabeling using SmartLabel reagents (Yun et al.,
2019). Samples are batch labeled in 5 μg goat anti-GFP and 3.5 μg rabbit
anti-cFos per brain using SmartBatch and are left to incubate for roughly
18 h. Then, samples undergo a series of washes and fixation steps over
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subsequent days before being incubated in secondary solutions (Yun et
al., 2019). Finally, brains are mounted in agarose + EasyIndex solution
for image preparation.

Brain-wide images are acquired using a SmartSPIM microscope
equipped with a 3.6× objective with a 1.8 μm×1.8 μm pixel size and a
z-step size of 4 μm. The axial resolution of the images is <4.0 μm. Tile
correcting and destripping are also applied as described in Swaney et
al. (2019). The samples are imaged using three channels: 488 nm (autofl-
uorescence/NeuN), 561 nm (GFP), and 642 nm (cFos).

The autofluorescence channel is used to align the images to the Allen
Brain Atlas (Allen Institute for Brain Science: https://portal.brain-map.
org/). LifeCanvas Technologies carries out this alignment process in
two phases. The first phase is an automated process that samples 10–
20 atlas-aligned reference samples for each brain sample using a variety
of SimpleElastix warping algorithms. An average alignment was com-
puted for all other intermediate images. To confirm the efficacy of the
alignment algorithm, the second phase uses a custom Neuroglancer
interface (Nuggt: https://github.com/chunglabmit/nuggt) for manual
confirmation of the automated alignment algorithm. The researcher
would adjust correspondence points between the atlas and the sample
image as needed to ensure more rigid alignment.

Once the images were aligned, cell populations were then mapped
onto the atlas for region-specific quantification. LifeCanvas
Technologies developed a custom convolutional neural network using
the TensorFlow Python package (Google). Cell detection was performed
by two networks in sequence. A fully convolutional detection network
(Shelhamer et al., 2016) based on a U-Net architecture (Ronneberger
et al., 2015) was used to find possible positive locations. Second, a con-
volutional network using a ResNet architecture (He et al., 2015) was
used to classify each location as positive or negative. Once the cells
were aligned and quantified, cFos data were aggregated into .csv files
and sent back to the Ramirez group for further analyses as described
below.

Network generation and analysis
Networks and all subsequent analysis thereof were generated using cus-
tom Python (ver. 3.9.12) scripts built upon networkx (ver. 2.8.4), scipy
(ver. 1.8.0), matplotlib (ver. 3.5.2), numpy (ver. 1.22.0), pandas (ver.
1.4.3), seaborn (ver. 0.11.2), statsmodels (ver. 0.13.2), sklearn (ver.
1.2.1), markov_clustering (ver. 0.0.06), and the brain connectivity tool-
box (ver. 0.6.0). For network creation, we first finalized the number of
ROIs from the datasheets obtained from LifeCanvas Technologies.

Network creation. To model whole-brain cFos density data as a cor-
relational network, we defined a graph structure such that a graph G is
defined as the tuple of edges and vertices, (V, E), where V is the set of
nodes that are in the graph and E is the connections between nodes
that are in V, or otherwise stated:

G = (V,E),V = {v | v [ G},E = {(ei, ej) | (ei, ej) [ V ei = ej}

To generate networks, we discarded any region that was a layer of an ROI
(e.g., layer 2/3 of the motor cortex) or an entry that was inclusive of sev-
eral distinct ROIs (e.g., isocortex). Additionally, we eliminated registered
fiber tracts and ventricular systems. The remaining brain regions were
now the set V, of nodes that would be used to create our graphs. After
extraneous entry elimination, we averaged hemispheric entries to obtain
a bilateral density value for each ROI for each animal. From there, inter-
region Spearman correlation values were calculated from these density
metrics across all animals in the respective experimental conditions.
These Spearman correlation coefficients thus became the edges between
nodes, meaning that the correlation coefficients were the weights associ-
ated between nodes, meaning that we created an undirected, weighted
graph. Restated, the networks were created such that the ROIs were
nodes, while the RS values between them were our weighted edges.
Importantly, only Spearman coefficients that survived a 5% FDR correc-
tion for significance were included. Intra-network communities were
identified by the Leiden algorithm (Traag et al., 2019). The Leiden algo-
rithm is an improvement on the popular Louvain algorithm. The

Louvain algorithm, while powerful, has been shown to sometimes yield
badly connected communities. Furthermore, it is nondeterministic,
and thus its results can change entirely on its seed and the iterations
used. The Leiden algorithm, however, has been proven to converge on
optimally assigned communities and is thus a fully superior algorithm.
For our implementation, we used the leiden_communities() method in
igraph (ver. 10.0.4). We used CPM as the objective function and the
Spearman correlations for our weights. We did a parameter search
over 10,000 values between 0.5 and 1.75 for the resolution parameter.
Whichever parameter yielded the highest modularity was selected, and
we would then run the Leiden algorithm again for 10,000 iterations.
We did this for all graphs in our analysis.

UMAP. UMAP is a nonlinear dimensionality reduction technique
that seeks to approximate a Riemann manifold that a collection of data
sits on (McInnes et al., 2020). To do this analysis, we used the Python
umap-learn package (ver. 0.5.3). We found that the default arguments
of the package were successful at reasonably separating our data, except
for the n_neigbors parameter, which we set to be 12.We colored our plots
of the Spearman values in UMAP space both by condition and parent
brain region (i.e., cortical plate) to determine how our data were
clustering.

Network statistics

1. Degree centrality: Degree centrality measures the importance of a
node in a network based on the number of connections it has. It is
defined as the fraction of nodes to which a given node is directly con-
nected. Mathematically, the degree centrality (Cd) of a node “i” in a
network with “N” nodes is calculated as:

Cd(i) =
(ki)

(N − 1)

where ki is the number of edges connected to node “i” and (N−1) is
the maximum possible degree in the network.

2. Betweenness: Betweenness centrality quantifies the extent to which a
node lies on the shortest paths between pairs of other nodes in a net-
work. It measures the node's ability to bridge different parts of the
network. Mathematically, the betweenness centrality (Cb) of a
node “i” is calculated as the sum of the fraction of shortest paths
passing through “i” over all pairs of nodes “s” and “t”:

3.

Cb(i) =
∑
s=i=t

sst(i)
sst

where sigmas,t is the total number of shortest paths from node “s” to
node “t” and sigmas,t(i) is the number of those paths that pass
through node “i.”

4. Eigenvector centrality: Eigenvector centrality assigns a score to each
node in a network based on the scores of its neighboring nodes. It
takes into account not only the number of connections but also
the importance of the nodes it is connected to. Mathematically,
the eigenvector centrality (Ce) of a node “i” is calculated as:

5.

Ce(i) = l−1 ·
∑

Aij · Ce(j)

where Aij is the adjacency matrix representing the connections
between nodes, Ce(j) is the eigenvector centrality of node “j”, and λ
is the largest eigenvalue of the adjacency matrix.

6. Closeness: Closeness centrality measures how close a node is to all
other nodes in the network. It quantifies the average distance from
a node to all other nodes in terms of shortest paths.
Mathematically, the closeness centrality (Cc) of a node “i” is calcu-
lated as the reciprocal of the average shortest path length from “i”
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to all other nodes:

Cc(i) =
1

1
N

∑
d(i, j)

where d(i, j) is the shortest path length between nodes “i” and “j.”
7. Clustering coefficient: The clustering coefficient measures the degree

to which nodes in a network tend to cluster together. It captures the
level of connectivity between a node's neighbors. Mathematically,
the clustering coefficient (C) of a node “i” is calculated as the ratio
of the number of existing connections between the neighbors of
“i” to the total possible number of connections between them:

C(i) =
(2 · Ei)

(ki · (ki − 1))

where Ei is the number of edges between the neighbors of node “i”
and ki is the degree of node “i.”

8. Within-module degree z-score (WMDz): The WMDz measures the
extent to which a node's degree is higher or lower than expected
within its own module in a modular network. It quantifies how well-
connected a node is within its own community compared to the rest
of the network. The WMDz score of a node “i” in a module “m” is
calculated as:

WMDz(i) =
(ki − kmavg )

sm

where ki is the degree of node “i,” kmavrg is the average degree of all
nodes in module “m,” and σm is the standard deviation of degrees in
module “m.”

9. Participation coefficient (PC): The PC measures the extent to which
a node connects to different modules in a network. It quantifies the
diversity of a node's connections across modules. Mathematically,
the PC of a node “i” is calculated as:

PC(i) = 1−
∑ si

mi

( )2

where si is the fraction of links that connect node “i” to nodes in
module “mi” and mi is the fraction of nodes in module “mi” in the
entire network.

Hub identification. We took two interrelated approaches for identi-
fying putative hubs in our respective networks. The first, which does not
rely on how nodes are clustered, examines a series of centrality metrics of
individual nodes (van den Heuvel et al., 2010; van den Heuvel and
Sporns, 2013; Coelho et al., 2018). These properties include the following:
degree (i.e., number of edges connected to a node), betweenness (i.e., how
often a node is in the shortest path between all pairs of nodes), closeness
(i.e., average length of the shortest possible path between a node and
every other node in the graph), eigenvector (i.e., how often a node is con-
nected to highly connected nodes), and clustering coefficient (i.e., how
often a node is connected to another node that forms a local clique).
We designated a threshold to find nodes that fell in the top 20% of degree,
betweenness, closeness, and eigenvector and those that fell in the bottom
20% of the clustering coefficient. Each node that fell in those respective
distributions would get a + 1 to their “hub score,” and we defined central
hubs as nodes having a score of 3 or greater.

The second approach relies on how nodes are functionally segregated
after a community detection algorithm is applied. For each node, we calcu-
lated theWMDz as ameasure of intramodular connectivity (i.e., howmany
edges connect a node with others in the samemodule) and PC as ameasure
of intermodular connectivity (i.e., how many edges connect a node with
other nodes in other modules). Modular hubs were considered nodes
that had a WMDz score of 1 or greater and a PC score of 0.5 or greater.

Statistical analysis
The sampling size for each experimental group was determined based on
previous studies (Wheeler et al., 2013; Vetere et al., 2017; Roy et al., 2022)
to obtain statistical strength in both behavior and network analyses
(Terstege and Epp, 2022) and are reported in figure captions. All statistics
for behavioral experiments were performed using both Python and
GraphPad Prism Version 9.2. Normality tests and respective QQ plots
were generated to run appropriate statistical testing. Data were presented
in the figures as mean ± SEM. Behavioral data were binned at 2min inter-
vals that corresponded to light epochs (ON vs OFF), and a repeated-
measures two-way analysis of variance (ANOVA) was used to identify
differences in behavior across conditions. For datasets with normal dis-
tributions, follow-up statistical analyses (i.e., one-way ANOVA, multiple
Welch's t tests) and post hoc analyses (i.e., Tukey's HSD and Sidak's) were
conducted as appropriate. Nonparametric testing for cell counts (Fig. 1B)
was performed using aMann–Whitney rank test. A one-sample t test was
conducted to compare ensemble overlap compared to chance levels
(Fig. 6C). Network statistical analyses were performed using Python
3.9.12. All statistical tests assumed an alpha level of 0.05. Statistical tests
are reported in each figure legend with *p<0.05, **p<0.01, and ***p<
0.001.

Results
Environment size constrains light-induced freezing during
hippocampal CFC engram reactivation
We tested for the capacity of a hippocampal CFC engram to
mediate behavioral changes contingent on external demands
placed on the animal, such as environment size. Mice first under-
went CFC during a “tagging” phase for activity-dependent label-
ing of the dedicated engram ensemble with either ChR2-eYFP or
eYFP (i.e., control; Fig. 1A,B). We first subjected groups of mice
to tagging in a commercially available operant chamber outfitted
for mice (Fig. 1A, “small”; see Methods). Over subsequent days,
these mice underwent optogenetic reactivation of the tagged hip-
pocampal CFC engram while exploring environments of various
sizes (i.e., “Small Box” [SB], “Medium Box” [MB], “Large Box”
[LB]). These chambers were contextually distinct from the orig-
inal fear conditioning chamber to prevent generalization (see
Methods).

We first quantified freezing behavior, which is defined as the
cessation of all movement with the exception of breathing
(Grosen and Kelley, 1972), as this is a common rodent behavioral
metric of a negative affective state such as fear. Strikingly, we
observed that optogenetic reactivation of a hippocampal CFC
engram tagged in the small chamber was sufficient to induce
freezing in the SB in ChR2-injected animals, whereas in the
same animals light-dependent freezing behavior was not
observed in the LB (RM one-way ANOVA with a Geisser–
Greenhouse correction and Tukey's multiple comparisons;
F(1.929,15.43) = 8.239, p= 0.0039; LB vs MB, p= 0.2700; LB vs SB,
p= 0.0148; MB vs SB, p= 0.0758; Fig. 1C, inset). Although there
is no interaction, there was significant variance between the reac-
tivation environment and the light epoch (RM two-way ANOVA
with a Geisser–Greenhouse correction; interaction, F(2.339,18.71) =
1.977, p= 0.1615; environment, F(1.952,15.61) = 10.88, p= 0.0012;
light, F(1.172,9.38) = 9.155, p= 0.0116; Fig. 1C). We found that there
was no difference in freezing behavior in ChR2-injected animals
during the initial 2 min baseline period across all three reacti-
vation environments (Tukey's multiple comparisons; SB vs
MB, p = 0.9999; MB vs LB, p = 0.6863; SB vs LB = 0.1875).
Importantly, this relationship between reactivation environ-
ment and light-induced freezing is not seen in control animals
(Fig. 1D). For the SB condition, there was a significant source of
variation from the light term and an interaction between virus
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Figure 1. Light-induced freezing is contingent on both tagging and reactivation environments. A, Behavioral schedule for activity-dependent tagging of a hippocampal CFC engram and
reactivation across environments. Mice are taken off of DOX 2 d prior to hippocampal CFC engram tagging. During the CFC session, mice are able to freely explore the environment (small
or large chamber) for a handful of minutes before shocks are delivered (4 shocks, 0.5 mA, 2 s). Mice are placed back on the DOX diet after CFC. The tagged hippocampal CFC engram is opto-
genetically reactivated across 3 d while the mice are exploring novel environments of different sizes (SB, MB, LB). B, Schematic representation of the activity-dependent tagging of engram
ensembles in the DG (left). Representative 20× image of the tagged-GFP + CFC engram (green), endogenous cFos (red), and ensemble overlap (merge, arrows) from a ChR2 animal conditioned
in the large chamber (middle). The total number of GFP + and cFos + overlapping cells was divided by the total number of GFP + cells to calculate a reactivation profile (right). There was
significantly greater engram reactivation in ChR2 animals when compared to controls. The scale bar represents 50 μm. C, % Freezing levels for all ChR2 animals conditioned in the small chamber
(n= 9) binned across 2 min epochs during CFC engram reactivation sessions across all three environments. There was a significant increase in the amount of light-induced freezing in the SB
compared to the LB (inset). D, Average % freezing across light epochs were compared within ChR2 (n= 9) and control (n= 14) animals that were conditioned in the small chamber across
reactivation environments. The greatest difference in light-induced freezing was observed in ChR2 animals in the SB condition. Additionally, there was a significant difference in light-induced
freezing in ChR2 animals in the MB, but no significant light-induced freezing in the LB. There was no significant difference in freezing across epochs in control animals during all three reactivation
days. E, % Freezing levels for all ChR2 animals conditioned in the large chamber (n= 10) binned across 2 min epochs during CFC engram reactivation sessions across all three environments. There
was no difference in light-induced freezing in any reactivation environment (inset). F, Average % freezing across light epochs were compared within ChR2 (n= 10) and control (n= 10) animals
that were conditioned in the large chamber across reactivation environments. There was no significant difference in freezing across epochs and environments in any group. Data are presented as
mean ± SEM. Significant differences are reported as **p< 0.01 and *p< 0.05.
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condition and light (RM two-way ANOVA with a Geisser–
Greenhouse correction; interaction, F(1,21) = 4.777, p = 0.0403;
virus condition, F(1,21) = 0.1625, p = 0.6910; light, F(1,21) =
9.852, p = 0.0050). Post hoc mean row comparisons found a
significant increase in % freezing during the presentation of
light in only ChR2 animals (Sidak's multiple comparisons;
ChR2 OFF vs ON, p = 0.0052; control OFF vs ON, p =
0.7026). For the MB condition, there was also significant vari-
ation from the light term and an interaction between light and
virus condition (RM two-way ANOVA with a Geisser–
Greenhouse correction; interaction, F(1,21) = 4.667, p= 0.0424;
virus condition, F(1,21) = 0.4549, p= 0.5074; light, F(1,21) = 5.975,
p= 0.0234). Post hocmean row comparisons also found a signifi-
cant increase in % freezing during the presentation of light in
only ChR2 animals (Sidak's multiple comparisons; ChR2 OFF
vs ON, p= 0.0152; control OFF vs ON, p= 0.9686). For the LB
condition, there was no variation from any term or an interaction
(RM two-way ANOVA with a Geisser–Greenhouse correction;
interaction, F(1,21) = 0.1458, p= 0.7064; virus condition, F(1,21) =
0.6075, p = 0.4444; light, F(1,21) = 3.819, p= 0.0641).
Additionally, there were no differences across light epochs with
post hoc mean row comparisons (Sidak's multiple comparisons;
ChR2 OFF vs ON, p= 0.2763; control OFF vs ON, p= 0.3957).

We speculated that the observed context-dependent, light-
induced freezing in the SB during reactivation was caused by a
similar spatial representation of the original small CFC chamber.
This has gained further credence in recent findings that demon-
strated contextual congruence between encoding and retrieval to
promote state-dependent freezing behavior (Meyer et al., 2017;
Jung et al., 2023). To test this idea, we constructed a new CFC
chamber with similar dimensions to our LB arena to determine
if an engram tagged during CFC in a spatially large chamber
has the ability to drive context-dependent freezing behavior dur-
ing reactivation across environmental conditions (Fig. 1A,
“large”; see Methods). Surprisingly, there was only variation
from the light term on freezing behavior in ChR2-injected ani-
mals during hippocampal CFC engram reactivation across
reactivation environments (RM two-way ANOVA with a
Geisser–Greenhouse correction; interaction, F(3.170,28.53) = 1.641,
p= 0.2001; environment, F(1.367,12.30) = 1.908, p= 0.1932; light,
F(1.811,16.30) = 8.474, p= 0.0036; Fig. 1E). There was also no dis-
cernible difference when comparing % freezing across light
epochs and virus condition (RM two-way ANOVA with a
Geisser–Greenhouse correction and Tukey's multiple compari-
sons; SB: interaction, F(1,18) = 0.1223, p= 0.7306; virus condition,
F(1,18) = 0.2316, p= 0.6362; light, F(1,18) = 0.2025, p= 0.6581;
ChR2 OFF vs ON, p=0.9969; control OFF vs ON, p=0.8225;
MB: interaction, F(1,18) = 1.214, p=0.2851; virus condition: F(1,18)
= 3.069, p=0.0968; light, F(1,18) = 0.5560, p= 0.4655; ChR2 OFF
vs ON, p= 0.3726; control OFF vs ON, p= 0.9616; LB: interac-
tion, F1,18 = 0.0532, p= 0.8202; virus condition, F(1,18) = 1.106,
p = 0.3069; light, F(1,18) = 0.2537, p= 0.6206; ChR2 OFF vs ON,
p= 0.9772; control OFF vs ON, p= 0.8478; Fig. 1F).
Importantly, we found significant overlapping populations of
the tagged hippocampal CFC engram and endogenous cFos in
the ChR2-injected animals (Mann–Whitney U test; p= 0.0286;
Fig. 1B), which suggests that congruent representations within
HPC cell populations may not manifest as freezing-related beha-
vior. All groups conditioned in both the small and large chamber
differentially increased their freezing behavior during the CFC
engram tagging session (Fig. 2). A three-way ANOVA revealed
a significant interaction between the time and environment
terms as well as the time and virus condition terms, but not

across all three terms. There was also a trending effect from the
environment term and a significant effect of time (RM three-way
ANOVA with a Geisser–Greenhouse correction; time × environ-
ment × virus condition, F(7,273) = 0.1893, p=0.9875; environment×
virus condition, F(1,39) = 0.1396, p=0.7108; time× virus condition,
F(7,273) = 2.158, p=0.0381; time× environment, F(7,273) = 2.815,
p = 0.0076; virus condition, F(1,39) = 1.972, p=0.1681; environ-
ment, F(1,39) = 4.077, p=0.0504; time, F(2.040,79.55) = 64.72,
p < 0.0001), which points to an intriguing possibility that the envi-
ronment in which learning occurs can shape behavior during fear
memory acquisition.

Since the LB has dimensions commonly associated with
open-field assessments for anxiety, we aimed to determine if
there were alterations in locomotive patterns such as avoidance
of the center of the chamber as well as distance traveled in the
LB.We did not observe any differences in avoidance of the center
during hippocampal CFC engram reactivation in the LB.
Although there was a trending decrease in the % time in center
in ChR2 animals conditioned in the small chamber, and a trend-
ing effect from the light term, there was no significant difference
across the virus condition or an interaction between the virus
condition and light terms (RM two-way ANOVA with with a
Geisser–Greenhouse correction and Sidak's multiple comparisons;
interaction, F(1,21) = 1.991, p=0.1729; virus condition, F(1,21) =
0.3386, p=0.5669; light, F(1,21) = 3.496, p=0.0755; ChR2 OFF vs
ON, p=0.0932; control OFF vs ON, p=0.9202; Fig. 3A). For ani-
mals conditioned in the large chamber, there was a trending
decrease in the % time in center in control animals and a trending
effect from the light term, and there was no significant difference
across virus condition and light or an interaction between the
two terms (RM two-way ANOVAwith a Geisser–Greenhouse cor-
rection and Sidak's multiple comparisons; interaction, F(1,18) =
1.277, p=0.2733; virus condition, F(1,18) = 0.04655, p=0.8316; light,
F(1,18) = 3.352, p=0.0837; ChR2 OFF vs ON p=0.8603; control
OFF vs ON, p=0.0989; Fig. 3B). When examining the distance
traveled for animals conditioned in the small chamber, there was
a significant effect from the light term; however, post hoc compar-
isons did not yield any significant difference between the virus
condition or an interaction between the two (RM two-way
ANOVA with a Geisser–Greenhouse correction and Sidak's

Figure 2. CFC in either small or large environments increases freezing behavior. A, Average
% freezing across time during CFC for ChR2 mice conditioned in the small chamber (n= 9; red
triangle), Control mice conditioned in the small chamber (n= 14; dark gray triangle), ChR2
mice conditioned in the large chamber (n= 10; blue circle), and control mice conditioned in
the large chamber (n= 10; light gray circle). Data are presented as mean ± SEM.
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multiple comparisons; interaction, F(1,21) = 0.1606, p=0.6926; virus
condition, F1,21 = 0.1898, p=0.6675; light, F(1,21) = 5.201, p=
0.0331; ChR2 OFF vs ON, p=0.1908; control OFF vs ON, p=
0.2738; Fig. 3C). For animals conditioned in the large chamber,
there was significant variation from the virus condition, and a
trending effect from the light term, but no interaction between
the two terms (RM two-way ANOVA with a Geisser–
Greenhouse correction and Sidak's multiple comparisons; interac-
tion, F(1,18) = 0.003848, p=0.9512; virus condition, F(1,18) = 6.007, p
=0.0247; light, F(1,18) = 3.248, p=0.0883; ChR2 OFF vs ON, p=
0.4138; control OFF vsON, p=0.3663). Although we found no dis-
cernible behavioral phenotypes in the two metrics examined here,
we cannot discount additional locomotive patterns that could be
modulated by hippocampal CFC engram reactivation.

As there was a lack of observational light-induced freezing
behavior in ChR2-injected animals that were conditioned in
the large chamber, we sought to quantify nonfreezing behaviors
such as rearing and self-grooming, both of which could serve as
escape-seeking and stress-coping, respectively (Griebel et al.,
1996; Cursio, 2001; Lever et al., 2006; Kalueff et al., 2016; Mu
et al., 2020; Liu et al., 2021). In ChR2 animals conditioned in
the small chamber, there was no observable light-induced rearing
across reactivation environments, yet a significant interaction
between the reactivation environment and light variables (RM two-

way ANOVA with a Geisser–Greenhouse correction; interaction,
F(2.952,23.62) = 3.818, p=0.0235; environment, F(1.275.10.20) =
0.007015, p=0.9655; light, F(1.352,10.82) = 2.659, p=0.1261;
Fig. 4A). The two light-ON epochs were further averaged together,
but there was no significant difference rearing during reactivation
periods across environments (RM one-way ANOVA with a
Geisser–Greenhouse correction andTukey'smultiple comparisons;
F(1.394,11.15) = 0.2854, p=0.6791; LB vsMB, p=0.9651; LB vs SB, p=
0.5865; MB vs SB, p=0.8851; Fig. 4A, inset). When compared with
control animals, there was no significant difference in % rearing
across the virus condition or the light in the SB (RM two-way
ANOVA with a Geisser–Greenhouse correction and Sidak's multi-
ple comparisons; interaction, F(1,21) = 0.006960, p=0.9343; virus
condition, F(1,21) = 0.2241, p=0.6408; light, F(1,21) = 1.129, p=
0.3001; ChR2 OFF vs ON, p=0.7858; control OFF vs ON, p=
0.6033), and there was a significant increase in % rearing in control
animals during light-ON in the MB (RM two-way ANOVA with a
Geisser–Greenhouse correction and Sidak's multiple comparisons;
interaction, F(1,21) = 0.5588, p=0.4631; virus condition, F(1,21) =
0.4023, p=0.5328; light, F(1,21) = 15.70, p=0.0007; ChR2 OFF vs
ON, p=0.1013; control OFF vs ON, p=0.0023), and there was a
significant increase in % rearing in ChR2 animals during
light-ON and a trending, but not significant, increase in % rearing
in control animals in the LB (RM two-way ANOVA with a

Figure 3. Active behaviors such as avoidance and distance are not affected by hippocampal CFC engram reactivation in the LB. A, % Time in center of the LB binned across 2 min epochs during
CFC engram reactivation in ChR2 animals conditioned in the small chamber (n= 9) and control animals conditioned in the small chamber (n= 14). % Time in the center of the LB was further
averaged across light epochs in the inset. There was a trending, but nonsignificant, decrease in the % time in center during light-ON in the ChR2 animals (inset). B, % Time in center of the LB
binned across 2 min epochs during CFC engram reactivation in ChR2 animals conditioned in the large chamber (n= 10) and control animals conditioned in the large chamber (n= 10). % Time in
the center of the LB was further averaged across light epochs in the inset. There was a trending, but nonsignificant decrease in the % time in center during light-ON in the control animals (inset).
C, Distance traveled in the LB binned across 2 min epochs during CFC engram reactivation in ChR2 animals conditioned in the small chamber (n= 9) and control animals conditioned in the small
chamber (n= 14). Distance traveled in the LB was further averaged across light epochs in the inset. There was no difference in distance traveled across all groups and light epochs (inset).
D, Distance traveled in the LB binned across 2 min epochs during CFC engram reactivation in ChR2 animals conditioned in the large chamber (n= 10) and control animals conditioned in the large
chamber (n= 10). The distance traveled in the LB was further averaged across light epochs in the inset. There was no difference in distance traveled across all groups and light epochs (inset).
Data are presented as mean ± SEM.
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Figure 4. Hippocampal CFC engram manipulation differentially alters rearing and grooming behavior across environments. A, % Rearing levels for all ChR2 animals conditioned in the small
chamber (n= 9) binned across 2 min epochs during CFC engram reactivation sessions across all three environments. On average, there was no significant difference in the amount of light-
induced rearing during light-ON across all three environments (inset). B, Average % rearing across light epochs was compared within ChR2 (n= 9) and control (n= 14) animals that were
conditioned in the small chamber across reactivation environments. C, % Rearing levels for all ChR2 animals conditioned in the large chamber (n= 10) binned across 2 min epochs during CFC
engram reactivation sessions across all three environments. On average, there was a trending, but nonsignificant, difference in light-induced rearing during light-ON across reactivation envi-
ronments with post hoc comparisons revealing a difference in rearing in the SB and MB (inset). D, Average % rearing across light epochs was compared within ChR2 (n= 10) and control (n= 10)
animals that were conditioned in the large chamber across reactivation environments. E, % Grooming levels for all ChR2 animals conditioned in the small chamber (n= 9) binned across 2 min
epochs during CFC engram reactivation sessions across all three environments. On average, there was a significant difference in the amount of grooming during light-ON in the SB and LB when
compared to the MB (inset). F, Average % grooming across light epochs was compared within ChR2 (n= 9) and control (n= 14) animals that were conditioned in the small chamber across
reactivation environments. G, % Grooming levels for all ChR2 animals conditioned in the large chamber (n= 10) binned across 2 min epochs during CFC engram reactivation sessions across all
three environments. On average, there was no difference in grooming during light-ON across all three reactivation environments (inset). H, Average % grooming across light epochs was
compared within ChR2 (n= 10) and control (n= 10) animals that were conditioned in the large chamber across reactivation environments. Data are presented as mean ± SEM. Significant
differences are reported as **p< 0.01 and *p< 0.05.
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Geisser–Greenhouse correction and Sidak's multiple comparisons;
interaction, F(1,21) = 0.4055, p=0.5311; virus condition, F(1,21) =
0.9853, p=0.3322; light, F(1,21) = 12.30, p=0.0021; ChR2 OFF vs
ON, p=0.0294; control OFF vs ON, p=0.0634; Fig. 4B).

For the ChR2 animals conditioned in the large chamber, there
was a significant effect from both the reactivation environment
and light terms, but no significant interaction between the two
(RM two-way ANOVA with a Geisser–Greenhouse correction;
interaction, F(1.888,16.99) = 1.052, p= 0.3670; environment,
F(1.384,12.46) = 4.976, p= 0.0355; light, F(1.503,13.53) = 6.962, p=
0.0123; Fig. 4C). When light-ON epochs were further averaged,
there was a trending difference across the environments, with
post hoc comparisons yielding a difference in light-induced rear-
ing in the SB when compared to the MB (RM one-way ANOVA
with a Geisser–Greenhouse correction and Tukey's multiple
comparisons; F(1.584,14.26) = 2.972, p= 0.0922; LB vs MB,
p = 0.6274; LB vs SB, p= 0.3812; MB vs SB, p= 0.0365; Fig. 4C,
inset). When compared with control animals conditioned in
the large chamber, there was no significant difference in % rear-
ing in the SB (RM two-way ANOVA with a Geisser–Greenhouse
correction and Sidak's multiple comparisons; interaction, F(1,18)
= 0.5455, p= 0.4697; virus condition, F(1,18) = 1.586, p= 0.2240;
light, F(1,18) = 1.885, p= 0.1867; ChR2 OFF vs ON, p= 0.2822;
control OFF vs ON, p= 0.8838); a significant effect from the virus
condition and the light, but no interaction between the two terms
with post hoc mean row comparisons yielding a trending, but
nonsignificant, difference in % rearing in control animals in
the MB (RM two-way ANOVA with a Geisser–Greenhouse cor-
rection and Sidak's multiple comparisons; interaction, F(1,18) =
0.3045, p= 0.5859; virus condition, F(1,18) = 4.778, p= 0.0423;
light, F(1,18) = 5.798, p= 0.0270; ChR2 OFF vs ON, p= 0.3693;
control OFF vs ON, p= 0.0990); and a trending, but nonsignifi-
cant, effect of virus condition and a significant effect of
light-ON % rearing, with post hoc comparisons yielding a differ-
ence in % rearing in ChR2 animals across light in the LB (RM
two-way ANOVA with a Geisser–Greenhouse correction and
Sidak's multiple comparisons; interaction, F(1,18) = 2.349, p=
0.1427; virus condition, F(1,18) = 3.019, p= 0.0994; light, F(1,18) =
5.168, p= 0.0355; ChR2 OFF vs ON, p= 0.0296; control OFF vs
ON, p= 0.8454; Fig. 4D). When we quantified % grooming beha-
vior in ChR2 animals conditioned in the small chamber, we
found a significant interaction between light and reactivation
environment, but not from the individual terms (RM two-way
ANOVA with a Geisser–Greenhouse correction; interaction,
F(3.023,24.18) = 3.141, p= 0.0434; environment, F(1.313,10.50) =
2.690, p= 0.1256; light, F(1.351,10.81) = 1.060, p= 0.3507; Fig. 4E).
When light-ON epochs were averaged together, we found that
ChR2 mice groomed more in the LB and SB in comparison to
the MB (RM one-way ANOVA with a Geisser–Greenhouse cor-
rection and Tukey's multiple comparisons; F(1.675, 13.40) = 11.57, p
= 0.0017; LB vs MB, p= 0.0200; LB vs SB, p= 0.3870; MB vs SB, p
= 0.0108; Fig. 4E, inset). When compared with control animals
conditioned in the small chamber, there was a significant effect
of the virus condition in the SB, but no difference across light
or an interaction (RM two-way ANOVA with a Geisser–
Greenhouse correction and Sidak's multiple comparisons; inter-
action, F(1,21) = 0.5058, p= 0.4848; virus condition, F(1,21) = 7.912,
p= 0.0104; light, F(1,21) = 2.065, p= 0.1654; ChR2 OFF vs ON,
p= 0.3327; control OFF vs ON, p= 0.8134) and no significant
effect in MB (RM two-way ANOVA with a Geisser–
Greenhouse correction and Sidak's multiple comparisons; inter-
action, F(1,21) = 1.531, p= 0.2296; virus condition, F(1,21) = 0.4117,
p= 0.5280; light, F(1,21) = 0.008312, p= 0.9282; ChR2 OFF vs ON,

p= 0.6450; control OFF vs ON, p= 0.6031) or LB (RM two-way
ANOVA with a Geisser–Greenhouse correction and Sidak's
multiple comparisons; interaction, F(1,21) = 2.213, p= 0.1517;
virus condition, F(1,21) = 1.411, p= 0.2481; light, F(1,21) = 2.205, p
= 0.1525; ChR2 OFF vs ON, p= 0.1362; control OFF vs ON, p
= 0.9999; Fig. 4F). For ChR2 animals conditioned in the large
chamber, there was a trending effect of light and a significant
effect of the reactivation environment and an interaction between
light and reactivation environment on% grooming (RM two-way
ANOVA with a Geisser–Greenhouse correction; interaction,
F(3.350,30.15) = 4.262, p= 0.0105; environment, F(1.553,13.97) = 7.049,
p= 0.0110; light, F(1.738,15.64) = 3.516, p= 0.0601; Fig. 4G). When
the light-ON epochs were further averaged together, we found
no statistical differences in % grooming across reactivation envi-
ronments (RM one-way ANOVA with a Geisser–Greenhouse
correction and Tukey's multiple comparisons; F(1.940,17.46) =
1.075, p= 0.3610; LB vs MB, p= 0.9962; LB vs SB, p= 0.5109;
MB vs SB, p= 0.4293; Fig. 4G, inset). Lastly, when compared
with control animals conditioned in the large chamber, there
was a significant effect of virus condition, light, and an interac-
tion between the two terms in the SB with post hoc mean row
comparisons finding a significant increase in grooming in
ChR2 during light-ON (RM two-way ANOVA with a Geisser–
Greenhouse correction and Sidak's multiple comparisons; inter-
action, F(1,18) = 4.996, p= 0.0383; virus condition, F(1,18) = 5.998,
p= 0.0248; light, F(1,18) = 5.614, p= 0.0292). There was a signifi-
cant interaction of the virus condition and light in the MB
(RM two-way ANOVA with a Geisser–Greenhouse correction
and Sidak's multiple comparisons; interaction, F(1,18) = 5.843, p
= 0.0265; virus condition, F(1,18) = 0.02054, p= 0.8876; light,
F(1,18) = 0.2003, p = 0.6598; ChR2 OFF vs ON, p= 0.3287; control
OFF vs ON, p= 0.1124), but no significance in the LB (RM two-
way ANOVA with a Geisser–Greenhouse correction and Sidak's
multiple comparisons; interaction, F(1,18) = 1.561, p= 0.2276;
virus condition, F(1,18) = 1.556, p= 0.2282; light, F(1,18) = 1.703,
p = 0.2083; ChR2 OFF vs ON, p= 0.1676; control OFF vs ON,
p= 0.9990; Fig. 4H). This points to the intriguing idea that hippo-
campal engrams are not fixed to produce a singular behavioral
phenotype during optogenetic reactivation. Together, these
data suggest that the same population of DG cells is capable of
differentially driving behavioral responses in a manner contin-
gent on the physical environment itself.

Engram reactivation in the SB increases brain-wide cFos
density
We next sought to measure brain-wide correlates of hippocampal
CFC engram reactivation. Prior work suggests that artificially
reactivating hippocampal engrams increases cFos expression in
downstream areas that are implicated in mediating learning
and affective states (Ramirez et al., 2015; Roy et al., 2022). We
hypothesized that we would see significant differences in cFos
expression in these regions as well as candidate regions that dic-
tate behavioral outputs. In separate sets of animals, we tagged a
hippocampal CFC engram in the small operant chamber, but
mice were subjected to only 1 d of reactivation in either the SB
or the LB (Fig. 5A). We sacrificed animals 90 min after the last
light-ON epoch to capture endogenous cFos expression and
sent brain tissue for whole organ clearing, immunohistochemis-
try, light-sheet microscopy, and cell quantification (LifeCanvas
Technologies; see Methods). We first recapitulated light-induced
freezing in ChR2 animals in the SB condition (RM two-way
ANOVA with Sidak's multiple comparisons for a mean row
effect; interaction, F(1,14) = 10.62, p= 0.0057; virus condition,
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Figure 5. Engram reactivation in the SB increases brain-wide cFos density in areas mediating memory and behavior. A, Schematic of the experimental paradigm. Animals experience activity-
dependent tagging of a CFC engram, but reactivation for only 1 d after the DOX window is closed. They are perfused 90 min after the last light-ON epoch to capture peak endogenous cFos
expression. B, % Freezing levels for ChR2 animals (n= 8) and control animals (n= 8) for the SB condition across light epochs. There is a significant increase in the amount of light-induced
freezing in only ChR2 animals (inset). % Freezing for separate groups of ChR2 animals (n= 8) and control animals (n= 8) for the LB condition across light epochs. There is no difference in the
amount of freezing of the chamber across groups (inset). **p< 0.01. C, Example heatmap of rodent brain-wide cFos density (cells/mm3) from a ChR2-injected animal in the SB condition.
D, Aggregation of the average cFos density in 10 parent brain areas registered to the Allen Brain Atlas in the SB condition. The observed q-values that are considered “discoveries” after the FDR
correction are reported. E, Aggregation of the average cFos density in 10 parent brain areas registered to the Allen Brain Atlas in the LB condition. The observed q-values that are considered
“discoveries” after the FDR correction are reported. F, cFos density for 12 individual ROIs were compared between ChR2 and Control animals in the SB condition using multiple unpaired
Welch-corrected t tests with a Benjamini–Hochberg correction of 5%. Observed q-values that are considered discoveries after the FDR are reported. G, cFos density for 12 individual ROIs
were compared between ChR2 and Control animals in the LB condition using multiple unpaired Welch-corrected t tests corrected with a Benjamini–Hochberg correction of 5%. Data are presented
as mean ± SEM. In all panels, # is indicative of statistical significance before the FDR correction was applied, yet failed to be considered an FDR-corrected discovery.
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F(1,14) = 3.785, p= 0.0721; light epoch, F(1,14) = 2.155, p= 0.1643;
ChR2 OFF vs ON, p= 0.0097; control OFF vs ON, p= 0.4012;
Fig. 5B, inset), but saw no changes in freezing in the LB condition
(RM two-way ANOVA with a Geisser–Greenhouse correction and
Sidak's multiple comparisons for a mean row effect; interaction,
F(1,14) = 0.9747, p=0.3403; virus condition, F(1,14) = 7.348, p=
0.0169; light epoch, F(1,14) = 4.189, p= 0.0599; ChR2 OFF vs
ON, p = 0.7151; control OFF vs ON, p= 0.0974; Fig. 5B, inset).
We assessed endogenous cFos density in 147 regions spanning
anterior cortical areas to the posterior hindbrain and assigned
each to a respective “parent brain region” from the Allen Brain
Atlas (e.g., cortical plate, midbrain; Fig. 5C, Table 1; Oh et al.,
2014). We first examined average cFos density across 10 parent
regions under each environmental condition. In the SB, where
there was light-induced freezing (Fig. 5B, left), we observed cor-
responding differences in the cortical plate (t= 4.147, p= 0.002),
cortical subplate (t= 2.835, p= 0.0137), and hypothalamus (t=
3.977, p = 0.002) in the ChR2 group [multiple t tests with 5%
Benjamini–Hochberg FDR (Benjamini and Hochberg, 1995;
Glickman et al., 2014); Fig. 5D]. Conversely in the LB condition,
where we saw no alterations in behavior (Fig. 5B, right), there
were statistically significant differences in cFos density in the cor-
tical plate (t= 2.676, p= 0.01), medulla (t= 3.125, p= 0.04), and
midbrain (t= 2.228, p= 0.031) in the respective ChR2 group,
but they did not survive the FDR correction (multiple t tests
with 5% Benjamini–Hochberg FDR; Fig. 5E). This supports the
notion that optogenetic reactivation of a hippocampal engram
is sufficient to drive cFos expression in a brain-wide pattern

that itself depends on the environment in which stimulation
occurred.

Next, we examined cFos density by individual brain regions.
We honed in on twelve individual regions that have been heavily
implicated in driving memory and defensive behaviors, specifi-
cally the hippocampus (DG, CA3, CA1; Scoville and Milner,
1957; Fanselow and Dong, 2010), amygdala (BLA, CEA;
Amano et al., 2011; Herry and Johansen, 2014; Yu et al., 2016;
Fadok et al., 2017), habenula (LH, MH; Pobbe and Zangrossi,
2010; Stamatakis and Stuber, 2012; Soria-Gόmez et al., 2015;
Zhang et al., 2016), paraventricular nucleus of the thalamus
(PVT; Do-Monte et al., 2015; Penzo et al., 2015; Ma et al.,
2021), periaqueductal gray (PAG; Deng et al., 2016; Tovote et
al., 2016), and hypothalamus (DMH, VMH, LHA; Jardim and
Guimarães, 2004; Lin et al., 2011; Kim et al., 2013; Jimenez et
al., 2018).We predicted that these systems would be differentially
engaged across conditions as a result of hippocampal CFC
engram reactivation. In the SB condition, where we observed
light-induced freezing (Fig. 5B, left), we found that there were
significant differences in cFos density in the DG (t= 2.987,
p = 0.014), CA3 (t= 2.779, p= 0.020), CA1 (t= 2.822, p= 0.021),
LH (t= 2.926, p= 0.017), and VMH (t= 4.043, p= 0.005) even
after applying a 5% FDR correction (Fig. 5F). In the LB condition,
we found statistically significant differences in cFos expression
in the DG (t= 2.317, p= 0.05), MH (t= 2.391, p= 0.043), PVT
(t= 2.271, p= 0.048), and PAG (t= 2.232, p= 0.05); however,
these comparisons did not survive the FDR correction
(Fig. 5G). Finally, we compared cFos density in the DG across
all experimental conditions and found significant variation
from the virus condition, but not from the reactivation environ-
ment or an interaction between the two (two-way ANOVA with
a Geisser–Greenhouse correction; interaction, F(1,28) = 0.1748,
p = 0.6791; virus condition, F(1,28) = 14.01, p= 0.0008; environ-
ment, F(1,28) = 0.0069, p= 0.9341). However, post hoc compari-
sons revealed that both ChR2 groups had similar cFos
expression, and ChR2 animals had significantly higher cFos den-
sity than their respective Controls in the SB reactivation environ-
ment, yet there was a trending, but nonsignificant, difference in
cFos density across groups in the LB (Tukey's multiple compar-
isons; ChR2 SB vs LB, p= 0.9952; control SB vs LB, p= 0.9844;
ChR2 SB vs control SB, p= 0.0310; ChR2 LB vs control LB,
p = 0.1106; Fig. 6A). Additionally, during hippocampal CFC
engram reactivation in the SB, we found a positive linear relation-
ship between freezing and DG cFos density in ChR2 animals
that was not seen in Control animals (Fig. 6B). The observed
freezing behavior in ChR2 animals is further corroborated by
significant engram overlap with endogenous cFos (Fig. 6C).
This suggests that hippocampal CFC engram reactivation
engages the DG as well as downstream areas that mediate mem-
ory and behavioral expression that is also contingent on the
animal's environment.

Hippocampal CFC engram reactivation alters brain-wide cFos
correlations
We hypothesized that environmental contingencies and hippo-
campal CFC engram reactivation would both induce an effect
on brain-wide cFos expression. To test this, we first visualized
interregional Spearman's correlations for all conditions and orga-
nized them based on the parent region in the Allen Brain Atlas
(Fig. 7F). To determine how engram reactivation altered cFos
correlation, we used a nonparametric permutation test that
quantified the absolute mean difference in cFos correlation. We
observed greater Spearman correlation coefficients in the ChR2

Table 1. List of 147 brain regions examined in this study. Regions are organized
alphabetically and have their acronyms as well as Parent Region listed.

Brain region Abbreviation Parent region

Anterior amygdalar area AAA Striatum
Anterior cingulate area ACA Cortical plate
Nucleus accumbens ACB Striatum
Anterior hypothalamic nucleus AHN Hypothalamus
Agranular insular area AI Cortical plate
Anterior tegmental nucleus AT Midbrain
Auditory areas AUD Cortical plate
Anteroventral preoptic nucleus AVP Hypothalamus
Anteroventral periventricular nucleus AVPV Hypothalamus
Bed nucleus of the anterior commissure BAC Pallidum
Basolateral amygdala BLA Cortical subplate
Basomedial amygdala BMA Cortical subplate
Bed nuclei of the stria terminalis BST Pallidum
Field CA1 CA1 Cortical plate
Field CA2 CA2 Cortical plate
Field CA3 CA3 Cortical plate
Central amygdalar nucleus CEA Cortical subplate
Central lateral nucleus of the thalamus CL Thalamus
Claustrum CLA Cortical subplate
Central linear nucleus raphe CLI Midbrain
Central medial nucleus of the thalamus CM Thalamus
Caudoputamen CP Striatum
Superior central nucleus raphe CS Pons
Cuneiform nucleus CUN Midbrain
Dentate Gyrus DG Cortical plate
Dorsomedial nucleus of the hypothalamus DMH Hypothalamus
Denate nucleus DN Cerebellum
Dorsal nucleus raphe DR Midbrain
Ectorhinal area ECT Cortical plate
Entorhinal area ENT Cortical plate
Endopiriform nucleus EP Cortical subplate
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SB condition in comparison to the Control SB condition (p= 0.0,
stat = 0.15812; Fig. 7A,B). We also found that in the ChR2 LB
condition, there were also larger Spearman coefficients in com-
parison to their respective control group (p= 0.0, stat =
0.15819; Fig. 7D,E). This suggests that the ChR2 activation,
regardless of the environmental variable, increased the mean cor-
relation coefficient. We then determined if the environmental
condition was capable of affecting the overall connectivity of
the brain. To test this, we compared the correlation coefficient
distributions across environmental conditions within the same
treatment. We found that the control groups were significantly
different from one another (p= 0.0, stat = 0.04778). The experi-
mental groups were also significantly different from one another
(p= 0.0, stat = 0.04879). Lastly, we determined which conditions
were different from a group of animals that underwent CFC but
natural fear memory retrieval in lieu of engram reactivation (i.e.,
natural retrieval). To do this, we compared all conditions to the
natural retrieval group and found that all were significantly
different (control LB, p= 0.0, stat = 0.06912; control SB, p= 0.0,
stat = 0.02134; ChR2 SB, p= 0.0, stat = 0.1795; ChR2 LB, p= 0.0,
stat = 0.2273; Fig. 7G). Overall, this analysis suggests that both
the environment and our engram perturbation create unique
patterns of brain activity. Next, we used uniform manifold
approximation and projection (UMAP; McInnes et al., 2020),
a nonlinear dimensionality reduction technique to represent
the correlation matrices’ values in two-dimensional space.
We used UMAP to test whether the Spearman coefficients
would segregate by brain region or by experimental condition.
We found that the correlation coefficients were clustered by the
experimental condition, irrespective of the parent brain region

(Fig. 7H,I). Notably, while the control conditions were the clos-
est in terms of their centers of mass, the ChR2 conditions clus-
tered away from each other. Interestingly, the natural retrieval
group, while producing similar levels of freezing to the ChR2
SB group (Fig. 8), clustered nearby both control conditions.
This suggests that the optogenetic perturbation of a hippocam-
pal CFC engram causes brain-wide changes that are unique to
natural fear retrieval. Furthermore, we see that all of the clus-
ters are well defined, which helps explain why in our previous
statistical tests, all conditions were significantly different from
one another, and that each experimental group displayed
unique patterns of cFos correlation. This lends credence to
the idea that our environmental and engram manipulations
create distinct brain states.

Unique modular structures are observed across engram
reactivation and environmental conditions
To understand the brain-wide interactions and functional pair-
wise relationships that occur during our engram manipulation,
we constructed and analyzed cFos cell density networks using
graph theory via a custom pipeline freely available on GitHub
(see Methods). We defined graphs to include only Spearman cor-
relations that survived a 5% FDR correction (Fig. 9A,C). We
wanted to understand to what extent the brain, especially in
fear memory states, forms a modular structure. In network anal-
ysis, communities (i.e., modules) are subsets of nodes within a
network that are more connected amongst themselves than
with other subsets of nodes (Fortunato and Newman, 2022).
One of the most popular algorithms for community detection
is the Louvain algorithm (Blondel et al., 2008), but recent

Figure 6. Enhanced DG cFos density in ChR2 SB animals relates to light-induced freezing. A, cFos density measurements in the DG in ChR2 and Control animals across both the SB and the LB
(n = 8 animals/group). *p< 0.05. B, Linear regression analyses comparing cFos density expression to % freezing during hippocampal CFC engram reactivation in the SB condition. There is a
positive relationship between DG cFos and % freezing only in ChR2 animals (top) that is not observed in control animals (bottom). C, Ensemble overlap between endogenous cFos and the
ChR2-eYFP engram is greater than chance in ChR2 SB animals (n= 8) as revealed by a one-sample t test (t= 6.860, p= 0.0002). Representative images of endogenous cFos (red), the tagged
hippocampal CFC engram (green), and ensemble overlap (merge, arrows) (right). The scale bar represents 50 μm.
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work showed that this algorithm can yield arbitrarily con-
nected modules (Traag et al., 2019). To overcome this issue,
we utilized the Leiden community detection method (Traag

et al., 2019). After applying this algorithm, we found that the
modular compositions varied across experimental conditions
and environments. Qualitatively, networks that were generated

Figure 7. Hippocampal CFC engram reactivation differentially increases cFos correlations across environments. A, cFos interregional Spearman's correlation matrix generated from ChR2 SB (n
= 8) animals across 147 brain ROIs organized by anatomical location (Table 1). Warmer colors are indicative of more positive correlations and cooler colors for more negative correlations. B, cFos
interregional Spearman's correlation matrix generated from control SB (n= 8) animals across 147 brain ROIs organized by anatomical location (Table 1). Warmer colors are indicative of more
positive correlations and cooler colors for more negative correlations. C, cFos interregional Spearman's correlation matrix generated from the natural retrieval group (n= 12) across 147 brain ROIs
organized by anatomical location (Table 1). Warmer colors are indicative of more positive correlations and cooler colors for more negative correlations. D, cFos interregional Spearman's correlation
matrix generated from ChR2 LB (n= 8) animals across 147 brain ROIs organized by anatomical location (Table 1). Warmer colors are indicative of more positive correlations and cooler colors for
more negative correlations. E, cFos interregional Spearman's correlation matrix generated from Control LB (n= 8) animals across 147 brain ROIs organized by anatomical location (Table 1).
Warmer colors are indicative of more positive correlations and cooler colors for more negative correlations. F, Color key (left) for parent regions based on the Allen Brain Atlas (cyan, cerebellum;
yellow, cortical plate; lilac, cortical subplate; red, hypothalamus; blue, medulla; orange, midbrain; green, pallidum; pink, pons; gray, striatum; purple, thalamus). Color key (right) for Spearman's
correlation values ranging from −1 to 1. Warmer colors (i.e., yellows and reds) are indicative of positive values and cooler colors (i.e., greens and blues) are indicative of negative values.
G, Distributions of all Spearman's correlation values for all experimental conditions. Both ChR2 SB and ChR2 LB have a greater average Spearman correlation than either the control group
or the natural retrieval condition. H, UMAP representations of all experimental conditions. Each point in UMAP space represents all cross-correlation values of an individual brain region reduced
in two-dimensional space. All conditions are separate in linear space, yet both control groups were closer in space than either of the ChR2 groups, showing that these states are inherently distinct.
Additionally, the natural retrieval condition clustered between the ChR2 and control groups. I, UMAP representations of brain regions spanning Allen Brain Atlas parent regions. Each point in
UMAP space represents all cross-correlation values of an individual brain region reduced in two-dimensional space. Brain regions do not show distinct segregation, as all of these colors are
intermingled, suggesting that engram stimulation does not bias particular brain regions into separable linear spaces.
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from the experimental groups [i.e., received optogenetic
stimulation (ChR2)] exhibited different structural features,
such as the number of edges, islands (i.e., nodes with a degree
measure of zero), and modules (Fig. 10). It is important to note
that these data are observational in nature and as such are
descriptive as presented.

When examining the composition of brain regions within
modules, we observed that there was one large module that con-
tained many hippocampal, thalamic, and hypothalamic nuclei in
both ChR2 networks. This implies that the thalamus, hypothala-
mus, and hippocampus are more correlated in their activity after
optogenetic stimulation, which is in line with previous findings
that demonstrated strong connections across the thalamus and
hippocampus in fear memory networks (Wheeler et al., 2013;
Vetere et al., 2017; Silva et al., 2019). Interestingly, only the
ChR2 SB group contained the trisynaptic hippocampal circuit
(DG, CA1, CA3) within one module, and in the ChR2 LB group,
the CA1 region was not within the partition containing the
remaining trisynaptic circuit. This could possibly be explained
by the contextual mismatch of the original fear conditioning
chamber and the larger testing arena (Fig. 5A, see Discussion).
Interestingly, in the natural retrieval condition, we found that
there were dominant thalamic, hypothalamic, and hippocampal
modules, which replicated earlier findings by Wheeler et al.
(2013) where they saw similar modular structures. We also
note that the modules in the natural retrieval network are qual-
itatively more homogeneous, which could signify the naturalistic
aspect of the experiment in comparison to optogenetics which
seems to be drastically increasing the correlation between brain
regions, especially the hippocampus and regions traditionally
associated with fear, such as the BLA. The control networks
were most notable for their general connection sparsity and small
module sizes (Fig. 10). This is expected, as these mice explored a
novel context without hippocampal CFC engram reactivation or
naturalistic fear memory retrieval and therefore are not produc-
ing fear-related behaviors.

To identify quantitative differences in network composition,
we generated degree rank plots across conditions (Fig. 9D). We
found a significant difference in the degree rank distribution
across ChR2 and control groups in both the SB (KS test:
D = 0.6735, p<0.0001) and LB (KS test: D=0.7551, p< 0.0001).

Additionally, we found a significant difference in the degree rank
across both ChR2 groups and the natural retrieval group
(Kruskal–Wallis test with multiple comparisons, statistic = 102.2,
p< 0.0001; ChR2 SB vs ChR2 LB, p<0.0001; ChR2 SB vs natural
retrieval, p<0.0001; ChR2 LB vs natural retrieval, p<0.0001).
Overall, these results are in line with the observation that our
hippocampal CFC engram reactivation is creating more correlated
brain states. The large change in the LB condition also implies that
although we lacked a behavioral phenotype in ChR2-injected ani-
mals (Fig. 5B), we are still likely engaging brain-wide fear circuitry
with our engram manipulations.

Engram reactivation differentially engages network hubs
across environmental conditions
Hubs in a network are nodes that are of high importance for sig-
nal propagation and are defined using a series of centrality met-
rics in addition to community-based characteristics when
clustering algorithms are applied (Guimerà and Nunes Amaral,
2005; van den Hueval and Sporns, 2013). To identify nodes
that act as central hubs, we generated a “hub score” by character-
izing the node distribution across five centrality metrics: degree
centrality, betweenness, closeness, eigenvector centrality, and
clustering coefficient (van den Hueval et al., 2010; Coelho et al.,
2018; Fig. 11A). Nodes that fell in the top 20% (or bottom 20%
in the case of clustering coefficient) of any of these metrics receive
a + 1 added to their hub score. Here, we defined central hubs as
having a score of 3 or greater. We found 22 central hubs unique
to the ChR2 SB network, with many implicated in memory (e.g.,
DG, ILA, BLA) and behavior (e.g., PVT, LHA; Fig. 11B, top).
Interestingly, all three of the shared central hubs between the
ChR2 and control SB networks are also implicated in memory-
guided actions. We speculate that these hubs may be involved
in processing shared representational features of the SB environ-
ment through their coordinated activity. There were 26 central
hubs in the ChR2 network generated under the LB condition,
17 of which are unique to the network (Fig. 11B, bottom).
Importantly, the DG and BLA are two shared hub regions in
both ChR2 networks generated from the SB and LB condition,
demonstrating that our engram manipulation does engage
largely characterized memory systems. Lastly, we identified 24
central hub regions in the natural retrieval network (Fig. 11C).

Figure 8. Natural retrieval of a fear memory produces similar freezing levels to hippocampal CFC engram reactivation in the SB. A, Schematic of the behavioral schedule for a group of naive
mice (n= 12) that do not have engram tagging and, therefore, do not need to be on the DOX diet. Mice are conditioned as other groups (four shocks, 2 s each, 0.5 mA) and are placed back in the
original context in which they got shocked 24 h after CFC for a 3 min retrieval session. B, % Freezing levels for the natural retrieval group (n= 12) and the average light-ON % freezing levels for
all animals conditioned in the small chamber and underwent reactivation in the ChR2 SB condition (n= 8). An unpaired t test determined that the amount of freezing during these two
experimental conditions was statistically insignificant (t= 1.184, p= 0.2519).
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Figure 9. Engram reactivation creates unique network topologies. A, ChR2 (left) and control (right) networks generated in the SB condition. B, ChR2 (left) and control (right) networks
generated in the LB condition. C, Natural retrieval network generated in the original fear conditioning context. D, Degree rank plot for all 147 nodes across all experimental conditions.
There were significantly higher-degree nodes in ChR2 networks across both the SB (top) and LB (middle) environments when compared to controls. Additionally, both ChR2 groups had greater
high-degree nodes than the natural retrieval group and the LB ChR2 had a significantly greater distribution of high-degree nodes than the ChR2 SB group (bottom). +Gray-colored edges are
positive correlations whereas red edges are negative. Edges were only kept if the Spearman correlation coefficient survived a 5% FDR correction. ++Nodes are colored by their respective Figure
7F ‘Parent Region’ (Fig. 4A, legend). Communities are denoted by their spatial proximity, i.e., communities are clustered together in circular shapes within the networks. Communities were
discovered using the Leiden algorithm.
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Many of these hub regions were cortical plate and subplate
regions implicated in memory-guided actions (i.e., CA1, CA3,
BLA) and other thalamic and hypothalamic regions implicated
in memory or defensive behavior (i.e., RE, ZI, VMH).
Additionally, the natural retrieval and ChR2 SB condition shared
hub regions such as the BLA, BMA, PA, ILA, and ACB suggesting
that shared behavioral phenotypes (i.e., freezing) can also share
hub regions that are implicated in memory and defense systems
even though network features do not point to identical brain
states, indicating that memory generated fear states can still
have differential patterns of brain activity. The BLA and ILA
are shared across both ChR2 groups and the natural retrieval
group, which also suggests that these regions can become
engaged as hubs in the LB during hippocampal CFC engram
reactivation without the presence of freezing without the emer-
gence of a freezing-related behavioral phenotype (i.e., in the
LB, Fig. 5B). This is further supported by the DG being recruited
as a central hub in both ChR2 groups, as this is the site of our
manipulations. Collectively, these findings provide an extensive
list of candidate central hubs that could be functionally perturbed
in vivo and are differentially recruited across environments, fur-
thering the evidence that these networks are distinct.

The application of clustering algorithms functionally segre-
gates nodes based on shared correlation composition across the
network. Thus, we further characterized nodes by how they com-
municated within and across clustered modules (Fig. 9). For each
node, we generated a respective WMDz and PC (Guimerà and
Nunes Amaral, 2005). Nodes that had a WMDz score of >1 are
considered highly important for intra-module signaling after
the Leiden community detection algorithm was applied. A node
having a PC > 0.5 is important for inter-module connectivity.
We defined modular hubs as having both a WMDz score of 1.0

or above and a PC score of 0.5 or higher (Fig. 12A,C,E).
Interestingly, we found that there are no shared community-
based hubs across ChR2 and control networks in the SB condi-
tion (Fig. 12B). However modular hubs in the ChR2 SB condition
are regions that are implicated in memory or behavior (i.e., MS,
ProS, CLA, MEA). Other modular hubs in the ChR2 LB condi-
tion are also implicated in memory or behavior (i.e., BLA, AI)
(Fig. 12D). Interestingly, the CLAwas a shared hub across groups
in the LB condition, which could be attributed to its role in
mediating anxiety responses (Niu et al., 2022). Finally, when
we compared modular hubs across all ChR2 groups and natural
retrieval, we were surprised to find no shared hubs across either
ChR2 group with natural retrieval, yet the CLA was shared across
both ChR2 groups (Fig. 12F). However, unique modular hubs in
the natural retrieval group included regions heavily implicated in
memory or defensive behavior (i.e., LHA, BST, BMA, ENT).
These findings also suggest that hippocampal CFC engram reac-
tivation produces a different brain state from natural retrieval
even though freezing across the two groups was equivocal.
Overall, these results qualitatively show that there are unique pat-
terns of coactivation as a result of DG-centered CFC engram
reactivation.

Discussion
Our results demonstrate that hippocampal CFC engram reactiva-
tion can drive freezing in a manner that is conditionally dependent
on training and environmental context. Furthermore, artificial
reactivation of hippocampal CFC engrams under different environ-
ments induced whole-brain cFos activity in a distinct manner
between environments, and network hub regions mediating
memory and behavior play a more active role in our experimental
groups.

Our initial behavioral findings suggest that light-induced
freezing becomes more apparent as the size of an environment
becomes constrained; ChR2-injected mice conditioned in a small
chamber demonstrated robust light-induced freezing in the SB
condition, an intermediate amount of light-induced freezing in
the MB, but no light-induced freezing in the LB. Previous studies
examining innate fear responses during TMT exposure also show
this relationship between the environment size and freezing
(Wallace and Rosen, 2000; Rosen et al., 2008). Rodents exposed
to TMT in smaller arenas often defaulted to freezing; others
opted for more active ambulatory responses such as avoidance
as environments were less spatially constrained. However, an
additional interpretation is that our results are due to contextual
congruence between the small CFC chamber and the SB during
hippocampal CFC engram reactivation, as similar cues could
trigger fear responses (Frankland et al., 2019; Jung et al., 2023).
To test this idea, we created a larger CFC chamber to tag a hip-
pocampal CFC engram to reactivate across the three environ-
ments. While there was a lack of light-induced freezing in the
LB during hippocampal CFC engram reactivation, we did
observe engram ensemble overlap with cFos. Thus, we obtained
congruent representation at the level of cell populations without
freezing emerging as the predominant behavioral phenotype.
Taken together, this indicates that the congruence of both reac-
tivation and initial training conditions are important variables
in determining if engram reactivation is capable of inducing
freezing behavior. This finding is incredibly important for inter-
preting prior and future engram literature as this means that
behavioral responses to engram reactivation are flexible in
nature.

Figure 10. The network structure is not comparable across experimental conditions. A, The
number of edges in each network. There are more significant edges left after the 5% FDR
correction in both ChR2 networks relative to the Control and natural retrieval groups.
B, The number of island nodes (i.e., nodes with zero connections) for each network. There
are higher island nodes in the control networks relative to both ChR2 networks. C, # of
modules as a result of applying the Leiden community detection algorithm for each network.
There are more modules in both Control and natural retrieval networks than there are in both
ChR2 networks. D, Average module size for each network. Although the ChR2 group had
fewer modules, the average size of their respective modules was much greater than the aver-
age size of the modules in the control and natural retrieval groups.
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Figure 11. Regions involving memory and defensive behavior act as central hubs in ChR2 and natural retrieval networks. A, The distribution of 50 nodes along five centrality metrics (degree,
betweenness, closeness, clustering coefficient, and eigenvector) for the ChR2 SB network. “Hub scores” were generated for all 147 nodes in the network. Nodes falling into the top 20% (degree,
betweenness, closeness, eigenvector) or bottom 20% (clustering coefficient) received a + 1. Nodes that fell in these distributions were assigned colors based on their anatomical location.
B, Central hubs for both ChR2 and control groups in the SB and LB conditions. We define central hubs as having a score of three or greater. Shared hubs lie in the intersection of the
two groups. C, Central hubs for both ChR2 groups and the natural retrieval condition. We define central hubs as having a score of three or greater. Shared hubs lie in the intersection of
the two groups.
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Historically, bidirectional light-induced freezing was the stan-
dard for successful engram reactivation in CFC studies, but our
results suggest this standard is incomplete; hippocampal CFC
engrams are not guaranteed to solely produce freezing, and
finding alternative behavioral or physiological measures will be
necessary to study engrams across diverse experimental para-
digms. In support, recent research suggests that activated fear
engrams are sufficient to drive active avoidance-like behaviors
in large arenas (Ramirez et al., 2013; Redondo et al., 2014;
Chen et al., 2019). Although we did not observe any avoidance-

like phenotypes and selective light-induced freezing, a negative
affective state such as fear can manifest as a variety of behaviors
across sexes (Blanchard and Blanchard, 1989; Colom-Lapetina et
al., 2019). There are many defensive strategies that animals
implement depending on their situation (Bolles, 1970;
Fanselow and Lester, 1988; Grossen and Kelley, 1972;
Blanchard and Blanchard, 2008). Defensive behaviors include,
but are not limited to, tail rattling as a sign of defensive aggres-
sion (Salay et al., 2018), risk assessment via stretch–attend pos-
ture (Molewijk et al., 1995), rearing as a form of escape-seeking

Figure 12. Regions involving memory and behavior act as modular hubs in ChR2 conditions and natural retrieval conditions. A, WMDz and participation coefficient (PC) were generated for all
147 regions for the ChR2 and control groups in the SB environment. Classification of a modular hub would pass a WMDz threshold of 1.0 and a PC threshold of 0.5. B, There were no shared
modular hubs across groups in the SB condition. Yet, regions implicated in memory and behavior still serve as unique modular hubs in the ChR2 group. C, WMDz and PC were generated for all
147 regions for the ChR2 and control groups in the LB environment. Classification of a modular hub would pass a WMDz threshold of 1.0 and a PC threshold of 0.5. D, The CLA was the only shared
hub across the ChR2 and Control groups in the LB. The ChR2 group also contained unique modular hubs implicated in memory and behavior. E, WMDz and PC were generated for all 147 regions
for the ChR2 groups and the natural retrieval group. Classification of a modular hub would pass a WMDz threshold of 1.0 and a PC threshold of 0.5. F, The CLA was the only shared modular hub
region between both ChR2 groups, yet there were also no shared modular hubs with the natural retrieval group. Unique modular hubs in the natural retrieval condition are also implicated in
memory and defensive behavior.
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(Lever et al., 2006), jumping as a means of escape (Mangieri et al.,
2019), and self-grooming as a de-arousal technique after an aver-
sive experience (Kalueff et al., 2016; Song et al., 2016; Liu et al.,
2021). Other defensive behaviors such as darting are sex-
dependent in dimorphic species such as rodents (Gruene et al.,
2015; Shansky and Murphy, 2021). Thus, we speculate that ani-
mals may engage in a variety of these behavioral modalities dur-
ing hippocampal CFC engram reactivation under different
environmental conditions, which may also be sex-dependent in
nature. Advanced methods in behavioral analysis such as
DeepLabCut, MoSeq, and BehaviorDEPOT could decipher high-
resolution behavioral repertoires during hippocampal CFC
engram reactivation across environments (Mathis et al., 2018;
Wiltschko et al., 2020; Gabriel et al., 2022). Future studies can
also examine the behavioral effects of hippocampal CFC engram
reactivation while incorporating more complex environments
such as one containing an exit or shelter that warrants the rodent
to engage in more navigation-based escape strategies (Vale et al.,
2017; Salay et al., 2018; Mangieri et al., 2019; Wang et al., 2021).
We predict that the latency for seeking either an exit or shelter
would decrease at the onset of hippocampal CFC engram reacti-
vation, which may also be subsequently accompanied by light-
induced freezing or other defensive behaviors such as stretch–
attend posture. This collectively underscores the behavioral
flexibility driven by activated DG engram cells. Indeed, there
are a variety of interleaving brain-wide pathways that mediate
these alterations in defensive behavioral strategies (Fanselow,
1994; Fendt and Fanselow, 1999; Gross and Canteras, 2012;
Silva et al., 2016), which points to the capacity for hippocampal
CFC engrams to produce changes in internal brain states.

Our brain-wide analyses revealed that optical stimulation of a
hippocampal CFC engram is capable of globally increasing cFos
expression. This dovetails with recent work showing that CA1
engram ensemble reactivation functionally recruits regions
downstream in a brain-wide manner as indicated by increased
cFos (Roy et al., 2022). We also found increased cFos expression
in both of our ChR2 groups in comparison to their respective
Control groups, despite that freezing was only present in the
SB condition, which underscores the complexity of behavioral
and physiological correlates of hippocampal CFC engram reacti-
vation. Furthermore, these changes in cFos density in both ChR2
groups coincide with greater positive Spearman correlations,
indicating that our optical stimulation is coordinating the brain's
activity at the network level. This level of coactivation is not seen
in either Control group, which suggests that artificial memory
activation pushes global brain activity to a state of greater func-
tional connectivity. These data are further complimented by our
UMAP results, which show that brain regions are segregated not
by their parental region (e.g., cortical subplate, hypothalamus)
but rather by their experimental condition, suggesting that
each condition elicited a unique pattern of brain activity.
Future experiments could identify how the reactivation of a
homecage or “neutral” context engram is capable of changing
brain-wide activity. We hypothesize that neutral engram reacti-
vation would increase global cFos as a result of direct hippocam-
pus stimulation but would still show a unique pattern of activity
in comparison to the Control or CFC engram groups, as each
brain region pattern of correlation coefficients is a multivariate
distribution. Thus, since UMAP, in theory, will segregate regions
based on both the magnitudes and the patterns of activation,
merely increasing correlated activity across the brain would not
necessarily elicit similar patterns of correlation in a neutral or
homecage engram reactivation group.

Through our community detection analyses, we probed which
regions of the brain were more densely connected to one another.
The ChR2 groups displayed qualitatively similar modular struc-
tures in that they had fewer but denser communities than their
respective Control groups. It is possible that our engram manip-
ulations are creating negative affective states with unique corre-
sponding brain states across our environmental conditions. For
example, the light-induced freezing in the SB generated a net-
work that clustered hypothalamic, thalamic, amygdalar, and hip-
pocampal regions that span a “fear pathway” (Fanselow, 1994;
Fendt and Fanselow, 1999; Gross and Canteras, 2012; Silva et
al., 2016) and exhibited more edge connections than the respec-
tive control network, whose animals did not exhibit any fear-like
behavior. Modules in both ChR2 networks were also more het-
erogeneous in node composition compared to the natural
retrieval network. The natural retrieval network had modules
that contained mostly hippocampal or thalamic regions and
some that were solely hypothalamic regions. This heterogeneity
in our ChR2 networks may indicate that our stimulation
increases correlated activity across neural circuitry that causes
heightened fear responses, even if not behaviorally observable
or measured here (i.e., lack of light-induced freezing in the
LB). Interestingly, naturalistic and light-induced freezing across
the natural retrieval and ChR2 SB conditions were not signifi-
cantly different, which could be partly explained by a phenome-
non known as biological degeneracy, where two different
physiological states can cause the same behavior (Edelman and
Gally, 2001; Marder and Taylor, 2011). Previous works demon-
strated degenerative networks across rodent strains (Wheeler et
al., 2013), timescales (Wheeler et al., 2013), and biological sex
(du Pleiss et al., 2022) to produce similar behavioral outcomes
across groups during either fear memory retrieval or
conditioning.

In network science, hubs are nodes that are crucial for medi-
ating signal propagation throughout the network. Here, we quan-
tified a series of centrality metrics and examined the distribution
of all 147 nodes across these metrics to identify central hubs (van
den Heuvel et al., 2010; van den Heuvel and Sporns, 2013) and
found many unique and shared central hubs across experimental
conditions. In the SB ChR2 and control networks, the only
shared central hubs were CA2, the prosubiculum (ProS). and
the presubiculum (PRE)—all of which are involved in
hippocampal-mediated memory systems (Aggleton and
Christiansen, 2015; Roy et al., 2017; Lehr et al., 2021).
Conversely, the LB experimental and control networks shared
many hubs implicated in locomotion, such as the red nucleus
(RN; Basile et al., 2021), substantia nigra pars compacta (SNc;
Palmiter, 2008), and regions that interface with cortical and hip-
pocampal areas such as the reuniens (RE) and rhomboid nucleus
(RH), both of which have direct reciprocal anatomical connec-
tions (Cassel et al., 2013). This implies that both sets of animals
could be in a general anxiogenic state due to being exposed in a
spatially large arena with no coverage indicative of safety.
Predictably, we found the DG and BLA as unique central hubs
in the ChR2 LB, as we reactivated the tagged hippocampal
CFC engram, and previous work has shown functional recruit-
ment of the BLA after hippocampal CFC engram reactivation
(Ramirez et al., 2013; Redondo et al., 2014; Ryan et al., 2015).
Of note are the shared central hubs between both ChR2 and nat-
ural retrieval networks. All three networks shared the BLA and
the ILA, both of which are highly implicated in producing fear
responses (Fanselow, 1994; Fendt and Fanselow, 1999; Dalley
et al., 2004; Herry and Johansen, 2014; Powell and Redish,
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2016). These findings generate an extensive list of candidate hub
regions for future perturbation experiments to test for hub region
necessity in generating light-induced behavioral phenotypes dur-
ing hippocampal CFC engram reactivation (Vetere et al., 2017).
Surprisingly, the DG is only present in the ChR2 networks, but
not in natural retrieval. Our findings suggest that although the
DG has been shown to be necessary and sufficient for memory
retrieval (McHugh et al., 2007; Liu et al., 2012), in the natural
expression of fear, it is not the seat of memory per se but a
part of a much larger connected network (Hainmueller and
Bartos, 2020). Furthermore, in the natural retrieval group CA1
and CA3 were found to be hubs, but not in the ChR2 groups.
This is an intriguing result as the hippocampus contains well-
characterized connections, yet contemporary work suggests
that information propagation within the hippocampus is not
solely serial through these connections but in multiple parallel
streams (Hainmueller and Bartos, 2020). The artificial nature
of optogenetic stimulation may be increasing recruitment of
hub regions spanning “fear and defense” pathways (i.e., thalamic,
hypothalamic, and midbrain areas) than naturalistic retrieval
alone. However, it is worth noting that “hub” can be a loosely
defined term, and the work presented here puts forth one possi-
ble definition. Other algorithms have been proposed that leverage
the Laplacian matrix of a network (Hong et al., 2021), graph
embeddings (Ma et al., 2017), or persistent homology (Aktas et
al., 2019) to detect hubs. Future work could lead to further inter-
pretations of biologically informed networks. Taken together,
our work bridges both biological- and network-based approaches
for studying memory and behavior.

Data availability statement
All code is freely available in the following GitHub repository:
https://github.com/rsenne/network_analysis. All data will be
made available upon reasonable request.
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