BACKGROUND AND SIGNIFICANCE

Withdrawal from drugs of abuse directly impacts the brain’s stress and
memory systems, which may underlie individual susceptibility to persistent drug
seeking behavior and stress-induced relapse. Preclinical studies demonstrate
impaired fear memory processes in rodents withdrawn from alcohol, including
abnormally heightened fear responses that are resilient to subsequent
attenuation through various training protocols such as exposure therapy—a
process in which the original relapse-inducing stimulus is repeatedly shown to
the subject (Koob, 2008; Quinones-Laracuente et al. 2015). Fear suppression
and addiction share several features including sensitivity to contextual cues and
stress-induced relapse of maladaptive behaviors though the underlying neural
circuits mediating, and sufficient to intervene with, heightened fear responses
following alcohol withdrawal have remained elusive. A mechanistic and circuit-
level understanding of withdrawal-induced fear enhancement may lead to the
development of effective treatments that facilitate abstinence and prevent relapse
in alcohol and other drug disorders.

Alcohol is the most commonly abused drug world-wide. Alcohol Use
Disorders (AUDs) is a diagnostic term referring to maladaptive behaviors
associated with alcohol abuse and addiction — the continuation of alcohol
consumption in the face of negative social, behavioral, and health outcomes
(DSM-5; Grant et al. 2015). AUDs affect an estimated 29.1% of the US
population at some time in their lives and pose significant personal and economic
costs; costs include lost productivity, healthcare, criminal justice, and quality of
life, accounting for $249.0 billion to the US economy in 2010 (Sacks et al. 2015).
Behavioral and pharmacotherapies improve outcomes, yet even after formal
treatment abstinence rates (one measure of treatment effectiveness) range from
25% to 43% suggesting that more than half of individuals that obtain current
treatments relapse within a year. These findings underlie the view that alcohol
addiction is a chronically relapsing disorder. Understanding the neurobehavioral
mediators of relapse — specifically, context- and stress-induced relapse of drug
seeking behavior following withdrawal - will facilitate the development of effective
treatments to prevent relapse in individuals with AUD.

Activity-dependent and optogenetic approaches to memory manipulation.
Ensembles of neurons distributed throughout the brain are thought to encode
and maintain specific memory. These neurons can be tagged during learning for
subsequent identification and manipulation (Ramirez et al. 2013a). The
hippocampus in particular is pivotal for the encoding and retrieval of personally
experienced memories. Recently, our work has demonstrated that hippocampus
cells in the dentate gyrus (DG) subregion that were active during learning are
sufficient to activate the neuronal and behavioral expression of negative, neutral,
and positive memory recall, thus raising the possibility of modulating their activity
to alter a variety of addiction-related states (Ramirez et al. 2015).



Figure 1. Genetically engineering hippocampus cells
active during learning to express light-sensitive
proteins. A mouse is injected with a virus cocktail
that tags only active hippocampus cells with any
light-sensitive protein of interest, thus permitting
optical control of discrete memories. We will focus

on the dentate gyrus (DG) subregion of the

hippocampus, which here has active cells labeled in

green (Ramirez et al. 2013).

To activate memories
in ethanol-withdrawn
mice, we will utilize an
activity-dependent
system to tag
hippocampus neurons
active during memory
formation. This system
permits only active
cells to be labeled by
any light-sensitive
protein of interest
(Figure 1), such as
channelrhodopsin-2
(ChR2), which when
optically stimulated are
sufficient to drive the
expression of specific
memories (Ramirez et
al. 2013b). By utilizing
these tools, my recent

unpublished data, which forms the foundation of this proposal and thus remains

unfunded, demonstrate that repeated optical activation of hippocampus cells
processing discrete fear memories is sufficient to induce context-specific
suppression of the associated memory. As shown in Figure 2, freezing, which is
a behavioral proxy of fear memory recall, was significantly reduced in Context A
relative to context B in experimental mice. The goal of this proposal is to directly
modulate fear memories artificially to facilitate fear memory suppression and

permanently mitigate the return of fear in mice withdrawn from alcohol.
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Figure 2. Subjects acquired a fear
memory in Context A (Ctx A) and in
Context B (Ctx B), but only Ctx A fear
cells were tagged and chronically
reactivated in Context C (Ctx C).
During Ctx A and B fear recall tests,
the experimental group showed a
reduction in Ctx A fear responses
only. Experimental group: ChR2-
mCherry; Control group: mCherry.



APPROACH: Artificially preventing addiction-induced fear memories
The goal of these experiments is to determine if fear memories resistant to fear
suppression in ethanol-withdrawn mice can be mitigated through artificial
reactivation of a fear memory and whether such optical manipulations
permanently reduce the return of fear over time. These experiments provide a
highly novel strateqy and a departure from my lab’s general research (i.e.
interrogating the basic mechanisms of learning and memory) by directly bridging
the fields of addiction research, optogenetics, and memory modulation.
Experiment 1. Briefly, mice will receive infusions of our activity dependent
viruses and optic fiber implants in the hippocampus to permit delivery of light
during defined periods of time. After recovery, mice will undergo a fear
conditioning protocol in which they are given mild foot shocks while
simultaneously having active hippocampus cells tagged with light-sensitive
proteins (Figure 1). The following day, they will receive another fear conditioning
session in Context B but cells that are active here will not be tagged with light-
sensitive proteins. With this strategy, Context A fear cells will be optically
modulated, whereas cells active during fear conditioning in Context B will remain
untagged. Next, mice will undergo a four-day ethanol exposure paradigm (e.g.,
Drinking in the Dark paradigm) followed by a two-day ethanol-free period (i.e.
withdrawal) which heightens subsequent fear responses that are resistant to
natural behavioral attenuation. This strategy also will allow us to specifically tag
hippocampus cells processing a fear memory prior to subsequent changes
induced by ethanol withdrawal and offers a more ethologically valid paradigm to
induce addiction- and withdrawal-related phenotypes. Following the withdrawal
period, Control and ethanol-withdrawn mice will be placed into a novel
environment and receive repeated light-stimulation of hippocampus cells
processing a discrete fear memory of Context A, as outlined in Figure 2. Mice
will then be tested for fear in both Context A and Context B. Importantly, we
predict that ethanol-withdrawn mice will show reduced freezing in Context A
relative to Context B, thus demonstrating context-specific suppression of fear’s
behavioral outputs. Together, these experiments provide an original intervention
for suppressing fear responses that are normally resistant to reduction as a result
of drug withdrawal and offer a novel bridge between addiction and memory
research.

Experiment 2. These lines of experiments will examine the effects of
manipulating hippocampus cells processing fear memories in the service of
permanently attenuating the return of fear that normally occurs with the passage
of time. Indeed, while various exposure therapy protocols are successful in
humans to mitigate fear responses, these interventions are acute and are known
to be “undone” both outside the training environment and over the course of
months. First, all mice will receive a viral infusion, optical implants, fear
conditioning, and withdrawn from ethanol as described above. Next, active
hippocampus cells processing the fear memory of Context A will be chronically
modulated as described in Experiment 1 to suppress the memory. However, two
new groups will be utilized: one group will then be given a session in which a mild
foot shock is delivered to induce the return of the original fear memory—a
process known as reinstatement of fear. The second group will undergo a one
month resting period after optically-induced suppression of fear, as the passage
of time itself is known to unmask previously suppressed fear—a process termed



spontaneous recovery. If our artificial protocol is sufficient to lastingly suppress a
fear memory, then we predict that the levels of fear memory recall after
reinstatement and after spontaneous recovery will be permanently diminished,
and thus demonstrate that artificial manipulation of discrete fear memories is
sufficient to bypass the maladaptive effects of ethanol withdrawal on memory.
Fittingly, our overall research strategy directly resonates with the Beckman’s
foundations goal to spearhead truly innovative and high-risk research in the
service of advance our understanding of the life sciences. Thus with experiments
outlined in this proposal, | firmly believe that our proposed work has the capacity
to open a new way of intervening with the cognitive and behavioral
pathophysiology underlying addiction-related behaviors.
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A. Personal Statement

| am an Assistant Professor at Boston University and Junior Fellow at Harvard University. The mission of
my lab’s research is to artificially modulate memories to reverse and prevent psychiatric disease-like states,
such as depression- and anxiety-related phenotypes. My previous work identified a defined set of cells active
during various memory formation, genetically engineered these cells to respond to light, and optically
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and pharmacology. For instance, in Howard Eichenbaum’s lab at Boston University, | performed in vivo single-
unit recordings in awake behaving animals to study how hippocampus cells represent the temporal dimension
during various behaviors, which contributed to the discovery of “time cells” published in Neuron. In Susumu
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mentorship, throughout my career in neurobiology | have mentored numerous undergraduates, graduate
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paper on memory. Fittingly, | firmly believe that, as a current Junior Fellow at Harvard and Assistant Professor
at Boston University, my lab is in a leading position to resolve the neurobiological mechanisms mediating
memory’s therapeutic significance and its role in generating maladaptive behavior.
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C. Contribution to Science

1. My early publications identified a key node in the brain sufficient for activating discrete memories.
Recent studies had indicated that defined populations of neurons were cellular correlates of a specific



memory trace, or "engram". Previously, other groups had found that selective ablation or inhibition ofsuch
neuronal populations erased memory responses, indicating that these cells are necessary for memory
expression. However, to demonstrate that a cell population is the cellular basis of a specific engram, it
was crucial to conduct a sufficiency experiment to show that direct activation of such a population is
capable of inducing the associated behavioral output. | was co-first author on these studies identifying a
subset of cells in the hippocampus that processed a specific engram and that were sufficient to activate
memory recall.
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this false memory was context-specific and activated similar downstream regions engaged during
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of an internally represented and behaviorally expressed memory. | was co-first author on these
studies, which provided the conceptual and experimental basis for my more recent experiments
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psychiatric disorders. Chronic stress is a potent diathesis for abnormal gene, cellular, and systems-
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Traditionally, reversing these conditions has relied on drug-based interventions, which by their nature
produce brain-wide non-specific effects and rely on drugs that are iterations of, and without improved
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showed that we could switch the valence driven by a defined set of memory-bearing hippocampus cells
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seeking to attenuate the emotionally salient components of PTSD-like states, for instance. We then
went on to show that optogenetically reactivating positive memories was sufficient to acutely suppress
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